File size: 5,860 Bytes
410fd66 a6dea81 410fd66 573cc21 68390a5 573cc21 45a579f 573cc21 a6dea81 573cc21 a6dea81 573cc21 d2ad93f 573cc21 432d77e dd19451 a6dea81 573cc21 a6dea81 573cc21 a6dea81 432d77e 573cc21 a6dea81 573cc21 a6dea81 573cc21 410fd66 432d77e a6dea81 410fd66 a6dea81 410fd66 a6dea81 410fd66 a6dea81 410fd66 a6dea81 410fd66 a6dea81 410fd66 a6dea81 410fd66 a6dea81 410fd66 a937006 432d77e a937006 410fd66 573cc21 410fd66 a6dea81 410fd66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import gradio as gr
import librosa
import numpy as np
import os
import hashlib
from datetime import datetime
from transformers import pipeline
import soundfile as sf
import torch
# Initialize local models
try:
# Whisper for speech-to-text (English-only)
whisper = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=-1) # CPU; use device=0 for GPU
print("Whisper model loaded successfully.")
except Exception as e:
print(f"Failed to load Whisper model: {str(e)}")
whisper = None
try:
# Symptom-2-Disease for health analysis
symptom_classifier = pipeline("text-classification", model="abhirajeshbhai/symptom-2-disease-net", device=-1) # CPU
print("Symptom-2-Disease model loaded successfully.")
except Exception as e:
print(f"Failed to load Symptom-2-Disease model: {str(e)}")
symptom_classifier = None
def compute_file_hash(file_path):
"""Compute MD5 hash of a file to check uniqueness."""
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def transcribe_audio(audio_file):
"""Transcribe audio using local Whisper model."""
if not whisper:
return "Error: Whisper model not loaded. Check logs for details."
try:
# Load and resample audio to 16,000 Hz
audio, sr = librosa.load(audio_file, sr=16000)
# Save as WAV for Whisper compatibility
temp_wav = f"/tmp/{os.path.basename(audio_file)}.wav"
sf.write(temp_wav, audio, sr)
# Transcribe
result = whisper(temp_wav)
transcription = result.get("text", "").strip()
print(f"Transcription: {transcription}")
# Clean up temp file
try:
os.remove(temp_wav)
except Exception:
pass
if not transcription:
return "Transcription empty. Please provide clear audio describing symptoms in English."
return transcription
except Exception as e:
return f"Error transcribing audio: {str(e)}"
def analyze_symptoms(text):
"""Analyze symptoms using local Symptom-2-Disease model."""
if not symptom_classifier:
return "Error: Symptom-2-Disease model not loaded. Check logs for details.", 0.0
try:
if not text or "Error transcribing" in text:
return "No valid transcription for analysis.", 0.0
result = symptom_classifier(text)
if result and isinstance(result, list) and len(result) > 0:
prediction = result[0]["label"]
score = result[0]["score"]
print(f"Health Prediction: {prediction}, Score: {score:.4f}")
return prediction, score
return "No health condition predicted", 0.0
except Exception as e:
return f"Error analyzing symptoms: {str(e)}", 0.0
def analyze_voice(audio_file):
"""Analyze voice for health indicators."""
try:
# Ensure unique file name to avoid Gradio reuse
unique_path = f"/tmp/gradio/{datetime.now().strftime('%Y%m%d%H%M%S%f')}_{os.path.basename(audio_file)}"
os.rename(audio_file, unique_path)
audio_file = unique_path
# Log audio file info
file_hash = compute_file_hash(audio_file)
print(f"Processing audio file: {audio_file}, Hash: {file_hash}")
# Load audio to verify format
audio, sr = librosa.load(audio_file, sr=16000)
print(f"Audio shape: {audio.shape}, Sampling rate: {sr}, Duration: {len(audio)/sr:.2f}s, Mean: {np.mean(audio):.4f}, Std: {np.std(audio):.4f}")
# Transcribe audio
transcription = transcribe_audio(audio_file)
if "Error transcribing" in transcription:
return transcription
# Analyze symptoms
prediction, score = analyze_symptoms(transcription)
if "Error analyzing" in prediction:
return prediction
# Generate feedback
if prediction == "No health condition predicted":
feedback = "No significant health indicators detected."
else:
feedback = f"Possible health condition: {prediction} (confidence: {score:.4f}). Consult a doctor."
feedback += f"\n\n**Debug Info**: Transcription = '{transcription}', Prediction = {prediction}, Confidence = {score:.4f}, File Hash = {file_hash}"
feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
# Clean up temporary audio file
try:
os.remove(audio_file)
print(f"Deleted temporary audio file: {audio_file}")
except Exception as e:
print(f"Failed to delete audio file: {str(e)}")
return feedback
except Exception as e:
return f"Error processing audio: {str(e)}"
def test_with_sample_audio():
"""Test the app with sample audio files."""
samples = ["audio_samples/sample.wav", "audio_samples/common_voice_en.wav"]
results = []
for sample in samples:
if os.path.exists(sample):
results.append(analyze_voice(sample))
else:
results.append(f"Sample not found: {sample}")
return "\n".join(results)
# Gradio interface
iface = gr.Interface(
fn=analyze_voice,
inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
outputs=gr.Textbox(label="Health Assessment Feedback"),
title="Health Voice Analyzer",
description="Record or upload a voice sample describing symptoms for preliminary health assessment. Supports English (transcription), with symptom analysis in English."
)
if __name__ == "__main__":
print(test_with_sample_audio())
iface.launch(server_name="0.0.0.0", server_port=7860) |