Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2Model
|
| 6 |
+
import requests
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
|
| 11 |
+
# Salesforce API credentials (store securely in environment variables)
|
| 12 |
+
SALESFORCE_API_URL = os.getenv("SALESFORCE_API_URL", "https://your-salesforce-instance.salesforce.com/services/data/v60.0/sobjects/HealthAssessment__c")
|
| 13 |
+
SALESFORCE_TOKEN = os.getenv("SALESFORCE_TOKEN", "your_salesforce_token")
|
| 14 |
+
|
| 15 |
+
# Load Wav2Vec2 model for speech feature extraction
|
| 16 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 17 |
+
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
|
| 18 |
+
|
| 19 |
+
def analyze_voice(audio_file):
|
| 20 |
+
"""Analyze voice for health indicators."""
|
| 21 |
+
try:
|
| 22 |
+
# Load audio file
|
| 23 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
| 24 |
+
|
| 25 |
+
# Process audio for Wav2Vec2
|
| 26 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True)
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
outputs = model(**inputs)
|
| 29 |
+
|
| 30 |
+
# Extract features (simplified for demo; real-world needs trained classifier)
|
| 31 |
+
features = outputs.last_hidden_state.mean(dim=1).numpy()
|
| 32 |
+
|
| 33 |
+
# Placeholder health analysis (replace with trained model)
|
| 34 |
+
respiratory_score = np.mean(features) # Mock score
|
| 35 |
+
mental_health_score = np.std(features) # Mock score
|
| 36 |
+
feedback = ""
|
| 37 |
+
if respiratory_score > 0.5:
|
| 38 |
+
feedback += "Possible respiratory issue detected; consult a doctor. "
|
| 39 |
+
if mental_health_score > 0.3:
|
| 40 |
+
feedback += "Possible stress indicators detected; consider professional advice. "
|
| 41 |
+
|
| 42 |
+
if not feedback:
|
| 43 |
+
feedback = "No significant health indicators detected."
|
| 44 |
+
|
| 45 |
+
feedback += "\n\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
|
| 46 |
+
|
| 47 |
+
# Store in Salesforce
|
| 48 |
+
store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score)
|
| 49 |
+
|
| 50 |
+
return feedback
|
| 51 |
+
except Exception as e:
|
| 52 |
+
return f"Error processing audio: {str(e)}"
|
| 53 |
+
|
| 54 |
+
def store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score):
|
| 55 |
+
"""Store analysis results in Salesforce."""
|
| 56 |
+
headers = {
|
| 57 |
+
"Authorization": f"Bearer {SALESFORCE_TOKEN}",
|
| 58 |
+
"Content-Type": "application/json"
|
| 59 |
+
}
|
| 60 |
+
data = {
|
| 61 |
+
"AssessmentDate__c": datetime.utcnow().isoformat(),
|
| 62 |
+
"Feedback__c": feedback,
|
| 63 |
+
"RespiratoryScore__c": float(respiratory_score),
|
| 64 |
+
"MentalHealthScore__c": float(mental_health_score),
|
| 65 |
+
"AudioFileName__c": os.path.basename(audio_file)
|
| 66 |
+
}
|
| 67 |
+
response = requests.post(SALESFORCE_API_URL, headers=headers, json=data)
|
| 68 |
+
if response.status_code != 201:
|
| 69 |
+
print(f"Failed to store in Salesforce: {response.text}")
|
| 70 |
+
|
| 71 |
+
# Gradio interface
|
| 72 |
+
iface = gr.Interface(
|
| 73 |
+
fn=analyze_voice,
|
| 74 |
+
inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
|
| 75 |
+
outputs=gr.Textbox(label="Health Assessment Feedback"),
|
| 76 |
+
title="Health Voice Analyzer",
|
| 77 |
+
description="Record or upload a voice sample for preliminary health assessment. Supports English, Spanish, Hindi, Mandarin."
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
if __name__ == "__main__":
|
| 81 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|