Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from abc import ABC, abstractmethod | |
from dataclasses import dataclass | |
from typing import Callable, Optional, Tuple, Union | |
import json | |
import os | |
from pathlib import Path | |
import torch | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
from diffusers.utils import BaseOutput | |
from torch import Tensor | |
from safetensors import safe_open | |
from ltx_video.utils.torch_utils import append_dims | |
from ltx_video.utils.diffusers_config_mapping import ( | |
diffusers_and_ours_config_mapping, | |
make_hashable_key, | |
) | |
def linear_quadratic_schedule(num_steps, threshold_noise=0.025, linear_steps=None): | |
if num_steps == 1: | |
return torch.tensor([1.0]) | |
if linear_steps is None: | |
linear_steps = num_steps // 2 | |
linear_sigma_schedule = [ | |
i * threshold_noise / linear_steps for i in range(linear_steps) | |
] | |
threshold_noise_step_diff = linear_steps - threshold_noise * num_steps | |
quadratic_steps = num_steps - linear_steps | |
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2) | |
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / ( | |
quadratic_steps**2 | |
) | |
const = quadratic_coef * (linear_steps**2) | |
quadratic_sigma_schedule = [ | |
quadratic_coef * (i**2) + linear_coef * i + const | |
for i in range(linear_steps, num_steps) | |
] | |
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0] | |
sigma_schedule = [1.0 - x for x in sigma_schedule] | |
return torch.tensor(sigma_schedule[:-1]) | |
def simple_diffusion_resolution_dependent_timestep_shift( | |
samples_shape: torch.Size, | |
timesteps: Tensor, | |
n: int = 32 * 32, | |
) -> Tensor: | |
if len(samples_shape) == 3: | |
_, m, _ = samples_shape | |
elif len(samples_shape) in [4, 5]: | |
m = math.prod(samples_shape[2:]) | |
else: | |
raise ValueError( | |
"Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" | |
) | |
snr = (timesteps / (1 - timesteps)) ** 2 | |
shift_snr = torch.log(snr) + 2 * math.log(m / n) | |
shifted_timesteps = torch.sigmoid(0.5 * shift_snr) | |
return shifted_timesteps | |
def time_shift(mu: float, sigma: float, t: Tensor): | |
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
def get_normal_shift( | |
n_tokens: int, | |
min_tokens: int = 1024, | |
max_tokens: int = 4096, | |
min_shift: float = 0.95, | |
max_shift: float = 2.05, | |
) -> Callable[[float], float]: | |
m = (max_shift - min_shift) / (max_tokens - min_tokens) | |
b = min_shift - m * min_tokens | |
return m * n_tokens + b | |
def strech_shifts_to_terminal(shifts: Tensor, terminal=0.1): | |
""" | |
Stretch a function (given as sampled shifts) so that its final value matches the given terminal value | |
using the provided formula. | |
Parameters: | |
- shifts (Tensor): The samples of the function to be stretched (PyTorch Tensor). | |
- terminal (float): The desired terminal value (value at the last sample). | |
Returns: | |
- Tensor: The stretched shifts such that the final value equals `terminal`. | |
""" | |
if shifts.numel() == 0: | |
raise ValueError("The 'shifts' tensor must not be empty.") | |
# Ensure terminal value is valid | |
if terminal <= 0 or terminal >= 1: | |
raise ValueError("The terminal value must be between 0 and 1 (exclusive).") | |
# Transform the shifts using the given formula | |
one_minus_z = 1 - shifts | |
scale_factor = one_minus_z[-1] / (1 - terminal) | |
stretched_shifts = 1 - (one_minus_z / scale_factor) | |
return stretched_shifts | |
def sd3_resolution_dependent_timestep_shift( | |
samples_shape: torch.Size, | |
timesteps: Tensor, | |
target_shift_terminal: Optional[float] = None, | |
) -> Tensor: | |
""" | |
Shifts the timestep schedule as a function of the generated resolution. | |
In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images. | |
For more details: https://arxiv.org/pdf/2403.03206 | |
In Flux they later propose a more dynamic resolution dependent timestep shift, see: | |
https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66 | |
Args: | |
samples_shape (torch.Size): The samples batch shape (batch_size, channels, height, width) or | |
(batch_size, channels, frame, height, width). | |
timesteps (Tensor): A batch of timesteps with shape (batch_size,). | |
target_shift_terminal (float): The target terminal value for the shifted timesteps. | |
Returns: | |
Tensor: The shifted timesteps. | |
""" | |
if len(samples_shape) == 3: | |
_, m, _ = samples_shape | |
elif len(samples_shape) in [4, 5]: | |
m = math.prod(samples_shape[2:]) | |
else: | |
raise ValueError( | |
"Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" | |
) | |
shift = get_normal_shift(m) | |
time_shifts = time_shift(shift, 1, timesteps) | |
if target_shift_terminal is not None: # Stretch the shifts to the target terminal | |
time_shifts = strech_shifts_to_terminal(time_shifts, target_shift_terminal) | |
return time_shifts | |
class TimestepShifter(ABC): | |
def shift_timesteps(self, samples_shape: torch.Size, timesteps: Tensor) -> Tensor: | |
pass | |
class RectifiedFlowSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's step function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample (x_{0}) based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.FloatTensor | |
pred_original_sample: Optional[torch.FloatTensor] = None | |
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter): | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps=1000, | |
shifting: Optional[str] = None, | |
base_resolution: int = 32**2, | |
target_shift_terminal: Optional[float] = None, | |
sampler: Optional[str] = "Uniform", | |
shift: Optional[float] = None, | |
): | |
super().__init__() | |
self.init_noise_sigma = 1.0 | |
self.num_inference_steps = None | |
self.sampler = sampler | |
self.shifting = shifting | |
self.base_resolution = base_resolution | |
self.target_shift_terminal = target_shift_terminal | |
self.timesteps = self.sigmas = self.get_initial_timesteps( | |
num_train_timesteps, shift=shift | |
) | |
self.shift = shift | |
def get_initial_timesteps( | |
self, num_timesteps: int, shift: Optional[float] = None | |
) -> Tensor: | |
if self.sampler == "Uniform": | |
return torch.linspace(1, 1 / num_timesteps, num_timesteps) | |
elif self.sampler == "LinearQuadratic": | |
return linear_quadratic_schedule(num_timesteps) | |
elif self.sampler == "Constant": | |
assert ( | |
shift is not None | |
), "Shift must be provided for constant time shift sampler." | |
return time_shift( | |
shift, 1, torch.linspace(1, 1 / num_timesteps, num_timesteps) | |
) | |
def shift_timesteps(self, samples_shape: torch.Size, timesteps: Tensor) -> Tensor: | |
if self.shifting == "SD3": | |
return sd3_resolution_dependent_timestep_shift( | |
samples_shape, timesteps, self.target_shift_terminal | |
) | |
elif self.shifting == "SimpleDiffusion": | |
return simple_diffusion_resolution_dependent_timestep_shift( | |
samples_shape, timesteps, self.base_resolution | |
) | |
return timesteps | |
def set_timesteps( | |
self, | |
num_inference_steps: Optional[int] = None, | |
samples_shape: Optional[torch.Size] = None, | |
timesteps: Optional[Tensor] = None, | |
device: Union[str, torch.device] = None, | |
): | |
""" | |
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
If `timesteps` are provided, they will be used instead of the scheduled timesteps. | |
Args: | |
num_inference_steps (`int` *optional*): The number of diffusion steps used when generating samples. | |
samples_shape (`torch.Size` *optional*): The samples batch shape, used for shifting. | |
timesteps ('torch.Tensor' *optional*): Specific timesteps to use instead of scheduled timesteps. | |
device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved. | |
""" | |
if timesteps is not None and num_inference_steps is not None: | |
raise ValueError( | |
"You cannot provide both `timesteps` and `num_inference_steps`." | |
) | |
if timesteps is None: | |
num_inference_steps = min( | |
self.config.num_train_timesteps, num_inference_steps | |
) | |
timesteps = self.get_initial_timesteps( | |
num_inference_steps, shift=self.shift | |
).to(device) | |
timesteps = self.shift_timesteps(samples_shape, timesteps) | |
else: | |
timesteps = torch.Tensor(timesteps).to(device) | |
num_inference_steps = len(timesteps) | |
self.timesteps = timesteps | |
self.num_inference_steps = num_inference_steps | |
self.sigmas = self.timesteps | |
def from_pretrained(pretrained_model_path: Union[str, os.PathLike]): | |
pretrained_model_path = Path(pretrained_model_path) | |
if pretrained_model_path.is_file(): | |
comfy_single_file_state_dict = {} | |
with safe_open(pretrained_model_path, framework="pt", device="cpu") as f: | |
metadata = f.metadata() | |
for k in f.keys(): | |
comfy_single_file_state_dict[k] = f.get_tensor(k) | |
configs = json.loads(metadata["config"]) | |
config = configs["scheduler"] | |
del comfy_single_file_state_dict | |
elif pretrained_model_path.is_dir(): | |
diffusers_noise_scheduler_config_path = ( | |
pretrained_model_path / "scheduler" / "scheduler_config.json" | |
) | |
with open(diffusers_noise_scheduler_config_path, "r") as f: | |
scheduler_config = json.load(f) | |
hashable_config = make_hashable_key(scheduler_config) | |
if hashable_config in diffusers_and_ours_config_mapping: | |
config = diffusers_and_ours_config_mapping[hashable_config] | |
return RectifiedFlowScheduler.from_config(config) | |
def scale_model_input( | |
self, sample: torch.FloatTensor, timestep: Optional[int] = None | |
) -> torch.FloatTensor: | |
# pylint: disable=unused-argument | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.FloatTensor`): input sample | |
timestep (`int`, optional): current timestep | |
Returns: | |
`torch.FloatTensor`: scaled input sample | |
""" | |
return sample | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: torch.FloatTensor, | |
sample: torch.FloatTensor, | |
return_dict: bool = True, | |
stochastic_sampling: Optional[bool] = False, | |
**kwargs, | |
) -> Union[RectifiedFlowSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
z_{t_1} = z_t - \Delta_t * v | |
The method finds the next timestep that is lower than the input timestep(s) and denoises the latents | |
to that level. The input timestep(s) are not required to be one of the predefined timesteps. | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model - the velocity, | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain (global or per-token). | |
sample (`torch.FloatTensor`): | |
A current latent tokens to be de-noised. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. | |
stochastic_sampling (`bool`, *optional*, defaults to `False`): | |
Whether to use stochastic sampling for the sampling process. | |
Returns: | |
[`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned, | |
otherwise a tuple is returned where the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
t_eps = 1e-6 # Small epsilon to avoid numerical issues in timestep values | |
timesteps_padded = torch.cat( | |
[self.timesteps, torch.zeros(1, device=self.timesteps.device)] | |
) | |
# Find the next lower timestep(s) and compute the dt from the current timestep(s) | |
if timestep.ndim == 0: | |
# Global timestep case | |
lower_mask = timesteps_padded < timestep - t_eps | |
lower_timestep = timesteps_padded[lower_mask][0] # Closest lower timestep | |
dt = timestep - lower_timestep | |
else: | |
# Per-token case | |
assert timestep.ndim == 2 | |
lower_mask = timesteps_padded[:, None, None] < timestep[None] - t_eps | |
lower_timestep = lower_mask * timesteps_padded[:, None, None] | |
lower_timestep, _ = lower_timestep.max(dim=0) | |
dt = (timestep - lower_timestep)[..., None] | |
# Compute previous sample | |
if stochastic_sampling: | |
x0 = sample - timestep[..., None] * model_output | |
next_timestep = timestep[..., None] - dt | |
prev_sample = self.add_noise(x0, torch.randn_like(sample), next_timestep) | |
else: | |
prev_sample = sample - dt * model_output | |
if not return_dict: | |
return (prev_sample,) | |
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample) | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
sigmas = timesteps | |
sigmas = append_dims(sigmas, original_samples.ndim) | |
alphas = 1 - sigmas | |
noisy_samples = alphas * original_samples + sigmas * noise | |
return noisy_samples | |