Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,284 Bytes
833590f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import math
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Callable, Optional, Tuple, Union
import json
import os
from pathlib import Path
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput
from torch import Tensor
from safetensors import safe_open
from ltx_video.utils.torch_utils import append_dims
from ltx_video.utils.diffusers_config_mapping import (
diffusers_and_ours_config_mapping,
make_hashable_key,
)
def linear_quadratic_schedule(num_steps, threshold_noise=0.025, linear_steps=None):
if num_steps == 1:
return torch.tensor([1.0])
if linear_steps is None:
linear_steps = num_steps // 2
linear_sigma_schedule = [
i * threshold_noise / linear_steps for i in range(linear_steps)
]
threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
quadratic_steps = num_steps - linear_steps
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (
quadratic_steps**2
)
const = quadratic_coef * (linear_steps**2)
quadratic_sigma_schedule = [
quadratic_coef * (i**2) + linear_coef * i + const
for i in range(linear_steps, num_steps)
]
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
sigma_schedule = [1.0 - x for x in sigma_schedule]
return torch.tensor(sigma_schedule[:-1])
def simple_diffusion_resolution_dependent_timestep_shift(
samples_shape: torch.Size,
timesteps: Tensor,
n: int = 32 * 32,
) -> Tensor:
if len(samples_shape) == 3:
_, m, _ = samples_shape
elif len(samples_shape) in [4, 5]:
m = math.prod(samples_shape[2:])
else:
raise ValueError(
"Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)"
)
snr = (timesteps / (1 - timesteps)) ** 2
shift_snr = torch.log(snr) + 2 * math.log(m / n)
shifted_timesteps = torch.sigmoid(0.5 * shift_snr)
return shifted_timesteps
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_normal_shift(
n_tokens: int,
min_tokens: int = 1024,
max_tokens: int = 4096,
min_shift: float = 0.95,
max_shift: float = 2.05,
) -> Callable[[float], float]:
m = (max_shift - min_shift) / (max_tokens - min_tokens)
b = min_shift - m * min_tokens
return m * n_tokens + b
def strech_shifts_to_terminal(shifts: Tensor, terminal=0.1):
"""
Stretch a function (given as sampled shifts) so that its final value matches the given terminal value
using the provided formula.
Parameters:
- shifts (Tensor): The samples of the function to be stretched (PyTorch Tensor).
- terminal (float): The desired terminal value (value at the last sample).
Returns:
- Tensor: The stretched shifts such that the final value equals `terminal`.
"""
if shifts.numel() == 0:
raise ValueError("The 'shifts' tensor must not be empty.")
# Ensure terminal value is valid
if terminal <= 0 or terminal >= 1:
raise ValueError("The terminal value must be between 0 and 1 (exclusive).")
# Transform the shifts using the given formula
one_minus_z = 1 - shifts
scale_factor = one_minus_z[-1] / (1 - terminal)
stretched_shifts = 1 - (one_minus_z / scale_factor)
return stretched_shifts
def sd3_resolution_dependent_timestep_shift(
samples_shape: torch.Size,
timesteps: Tensor,
target_shift_terminal: Optional[float] = None,
) -> Tensor:
"""
Shifts the timestep schedule as a function of the generated resolution.
In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images.
For more details: https://arxiv.org/pdf/2403.03206
In Flux they later propose a more dynamic resolution dependent timestep shift, see:
https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66
Args:
samples_shape (torch.Size): The samples batch shape (batch_size, channels, height, width) or
(batch_size, channels, frame, height, width).
timesteps (Tensor): A batch of timesteps with shape (batch_size,).
target_shift_terminal (float): The target terminal value for the shifted timesteps.
Returns:
Tensor: The shifted timesteps.
"""
if len(samples_shape) == 3:
_, m, _ = samples_shape
elif len(samples_shape) in [4, 5]:
m = math.prod(samples_shape[2:])
else:
raise ValueError(
"Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)"
)
shift = get_normal_shift(m)
time_shifts = time_shift(shift, 1, timesteps)
if target_shift_terminal is not None: # Stretch the shifts to the target terminal
time_shifts = strech_shifts_to_terminal(time_shifts, target_shift_terminal)
return time_shifts
class TimestepShifter(ABC):
@abstractmethod
def shift_timesteps(self, samples_shape: torch.Size, timesteps: Tensor) -> Tensor:
pass
@dataclass
class RectifiedFlowSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter):
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps=1000,
shifting: Optional[str] = None,
base_resolution: int = 32**2,
target_shift_terminal: Optional[float] = None,
sampler: Optional[str] = "Uniform",
shift: Optional[float] = None,
):
super().__init__()
self.init_noise_sigma = 1.0
self.num_inference_steps = None
self.sampler = sampler
self.shifting = shifting
self.base_resolution = base_resolution
self.target_shift_terminal = target_shift_terminal
self.timesteps = self.sigmas = self.get_initial_timesteps(
num_train_timesteps, shift=shift
)
self.shift = shift
def get_initial_timesteps(
self, num_timesteps: int, shift: Optional[float] = None
) -> Tensor:
if self.sampler == "Uniform":
return torch.linspace(1, 1 / num_timesteps, num_timesteps)
elif self.sampler == "LinearQuadratic":
return linear_quadratic_schedule(num_timesteps)
elif self.sampler == "Constant":
assert (
shift is not None
), "Shift must be provided for constant time shift sampler."
return time_shift(
shift, 1, torch.linspace(1, 1 / num_timesteps, num_timesteps)
)
def shift_timesteps(self, samples_shape: torch.Size, timesteps: Tensor) -> Tensor:
if self.shifting == "SD3":
return sd3_resolution_dependent_timestep_shift(
samples_shape, timesteps, self.target_shift_terminal
)
elif self.shifting == "SimpleDiffusion":
return simple_diffusion_resolution_dependent_timestep_shift(
samples_shape, timesteps, self.base_resolution
)
return timesteps
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
samples_shape: Optional[torch.Size] = None,
timesteps: Optional[Tensor] = None,
device: Union[str, torch.device] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
If `timesteps` are provided, they will be used instead of the scheduled timesteps.
Args:
num_inference_steps (`int` *optional*): The number of diffusion steps used when generating samples.
samples_shape (`torch.Size` *optional*): The samples batch shape, used for shifting.
timesteps ('torch.Tensor' *optional*): Specific timesteps to use instead of scheduled timesteps.
device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved.
"""
if timesteps is not None and num_inference_steps is not None:
raise ValueError(
"You cannot provide both `timesteps` and `num_inference_steps`."
)
if timesteps is None:
num_inference_steps = min(
self.config.num_train_timesteps, num_inference_steps
)
timesteps = self.get_initial_timesteps(
num_inference_steps, shift=self.shift
).to(device)
timesteps = self.shift_timesteps(samples_shape, timesteps)
else:
timesteps = torch.Tensor(timesteps).to(device)
num_inference_steps = len(timesteps)
self.timesteps = timesteps
self.num_inference_steps = num_inference_steps
self.sigmas = self.timesteps
@staticmethod
def from_pretrained(pretrained_model_path: Union[str, os.PathLike]):
pretrained_model_path = Path(pretrained_model_path)
if pretrained_model_path.is_file():
comfy_single_file_state_dict = {}
with safe_open(pretrained_model_path, framework="pt", device="cpu") as f:
metadata = f.metadata()
for k in f.keys():
comfy_single_file_state_dict[k] = f.get_tensor(k)
configs = json.loads(metadata["config"])
config = configs["scheduler"]
del comfy_single_file_state_dict
elif pretrained_model_path.is_dir():
diffusers_noise_scheduler_config_path = (
pretrained_model_path / "scheduler" / "scheduler_config.json"
)
with open(diffusers_noise_scheduler_config_path, "r") as f:
scheduler_config = json.load(f)
hashable_config = make_hashable_key(scheduler_config)
if hashable_config in diffusers_and_ours_config_mapping:
config = diffusers_and_ours_config_mapping[hashable_config]
return RectifiedFlowScheduler.from_config(config)
def scale_model_input(
self, sample: torch.FloatTensor, timestep: Optional[int] = None
) -> torch.FloatTensor:
# pylint: disable=unused-argument
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def step(
self,
model_output: torch.FloatTensor,
timestep: torch.FloatTensor,
sample: torch.FloatTensor,
return_dict: bool = True,
stochastic_sampling: Optional[bool] = False,
**kwargs,
) -> Union[RectifiedFlowSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
z_{t_1} = z_t - \Delta_t * v
The method finds the next timestep that is lower than the input timestep(s) and denoises the latents
to that level. The input timestep(s) are not required to be one of the predefined timesteps.
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model - the velocity,
timestep (`float`):
The current discrete timestep in the diffusion chain (global or per-token).
sample (`torch.FloatTensor`):
A current latent tokens to be de-noised.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
stochastic_sampling (`bool`, *optional*, defaults to `False`):
Whether to use stochastic sampling for the sampling process.
Returns:
[`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
t_eps = 1e-6 # Small epsilon to avoid numerical issues in timestep values
timesteps_padded = torch.cat(
[self.timesteps, torch.zeros(1, device=self.timesteps.device)]
)
# Find the next lower timestep(s) and compute the dt from the current timestep(s)
if timestep.ndim == 0:
# Global timestep case
lower_mask = timesteps_padded < timestep - t_eps
lower_timestep = timesteps_padded[lower_mask][0] # Closest lower timestep
dt = timestep - lower_timestep
else:
# Per-token case
assert timestep.ndim == 2
lower_mask = timesteps_padded[:, None, None] < timestep[None] - t_eps
lower_timestep = lower_mask * timesteps_padded[:, None, None]
lower_timestep, _ = lower_timestep.max(dim=0)
dt = (timestep - lower_timestep)[..., None]
# Compute previous sample
if stochastic_sampling:
x0 = sample - timestep[..., None] * model_output
next_timestep = timestep[..., None] - dt
prev_sample = self.add_noise(x0, torch.randn_like(sample), next_timestep)
else:
prev_sample = sample - dt * model_output
if not return_dict:
return (prev_sample,)
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
sigmas = timesteps
sigmas = append_dims(sigmas, original_samples.ndim)
alphas = 1 - sigmas
noisy_samples = alphas * original_samples + sigmas * noise
return noisy_samples
|