A newer version of the Gradio SDK is available:
5.34.1
title: Vietnamese Legal Chatbot
emoji: ⚖️
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.34.0
app_file: app.py
pinned: false
Vietnamese Legal Chatbot 🏛️⚖️
A Retrieval-Augmented Generation (RAG) system designed to answer legal questions in Vietnamese, providing accurate and contextually relevant responses based on Vietnamese legal documents.
Features
- Advanced RAG Architecture - Combines vector search, BM25, and cross-encoder reranking for optimal document retrieval
- Hybrid Search - Uses both semantic similarity (vector search) and keyword matching (BM25) to find relevant documents
- Question Refinement - Improves query understanding through automatic question refinement
- Cross-Encoder Reranking - Employs cross-encoder reranking to improve the accuracy of retrieved documents.
- Fallback Mechanisms - Integrates with Google Search to provide answers when legal documents are insufficient.
- Vietnamese-Optimized - Specifically designed for Vietnamese language processing and legal terminology
Dataset
The dataset used is from the [Zalo-AI-2021] Legal Text Retrieval dataset. Please download and restructure it to match the following format:
├── data/
│ ├── train/
│ │ ├── train_question_answer.json
│ │ └── train_qna.csv
│ ├── test/
│ │ ├── public_test_question.json
│ │ └── public_test_sample_submission.json
│ ├── corpus/
│ │ ├── legal_corpus_legend.csv
│ │ ├── legal_corpus_splitted.csv
│ │ ├── legal_corpus_original.csv
│ │ ├── legal_corpus_merged_u369.csv
│ │ ├── legal_corpus_merged_u256.csv
│ │ ├── legal_corpus_hashmap.csv
│ │ └── legal_corpus.json
│ └── utils/
│ └── stopwords.txt
Architecture
The system follows a modern RAG architecture with three primary layers:
flowchart LR
%% Input Layer
Query["🔍 User Query"] ==> QR["📝 Question Refiner"]
QR ==> TP["⚙️ Text Processor"]
%% Data Sources
DOCS[("📚 Legal Documents<br/>Knowledge Base")] ==> TP
%% Retrieval Layer
subgraph retrieval["🔎 Retrieval Layer"]
direction LR
VS["🎯 Vector Store<br/>(Qdrant)<br/>Semantic Search"]
BM25["📊 BM25 Retriever<br/>Keyword Search"]
Hybrid["⚡ Hybrid Search<br/>Score Combination"]
VS ==> Hybrid
BM25 ==> Hybrid
end
%% Reranking Layer
subgraph reranking["🏆 Reranking Layer"]
direction LR
RR["🧠 Cross-Encoder<br/>Reranker<br/>Deep Relevance"]
SF["🔢 Score Fusion<br/>Final Ranking"]
RR ==> SF
end
%% Generation Layer
subgraph generation["✨ Generation Layer"]
direction LR
CT["📋 Context Builder<br/>Prompt Assembly"]
LLM["🤖 LLM<br/>(Gemini)<br/>Response Generation"]
CT ==> LLM
end
%% Main flow connections
TP ==> VS
TP ==> BM25
Hybrid ==> RR
SF ==> CT
LLM ==> Response["📤 Final Response"]
%% Fallback System
Hybrid -.->|"⚠️ Insufficient Information"| FB["🔄 Fallback Handler"]
FB ==> GS["🌐 Google Search API<br/>External Knowledge"]
GS ==> CT
%% External Data Stores
VDB[("💾 Vector Database<br/>Embeddings Storage")] <==> VS
BM25DB[("📇 BM25 Index<br/>Inverted Index")] <==> BM25
%% Enhanced Styling
classDef inputNode fill:#2d3748,stroke:#4299e1,stroke-width:3px,color:#ffffff,font-weight:bold
classDef processNode fill:#1a365d,stroke:#63b3ed,stroke-width:2px,color:#ffffff
classDef retrievalNode fill:#065f46,stroke:#10b981,stroke-width:2px,color:#ffffff
classDef rerankNode fill:#7c2d12,stroke:#f97316,stroke-width:2px,color:#ffffff
classDef generationNode fill:#581c87,stroke:#a855f7,stroke-width:2px,color:#ffffff
classDef fallbackNode fill:#be123c,stroke:#f43f5e,stroke-width:2px,color:#ffffff
classDef dataNode fill:#365314,stroke:#84cc16,stroke-width:2px,color:#ffffff
classDef outputNode fill:#1e293b,stroke:#06b6d4,stroke-width:3px,color:#ffffff,font-weight:bold
%% Apply styles
class Query,QR inputNode
class TP processNode
class VS,BM25,Hybrid retrievalNode
class RR,SF rerankNode
class CT,LLM generationNode
class FB,GS fallbackNode
class DOCS,VDB,BM25DB dataNode
class Response outputNode
%% Subgraph styling
classDef subgraphStyle fill:#f8fafc,stroke:#334155,stroke-width:2px
class retrieval,reranking,generation subgraphStyle
Retrieval Layer
- Vector Store (Qdrant) - Semantic search using dense vector embeddings
- BM25 Retriever - Statistical keyword-based search
- Hybrid Search - Combines and deduplicates results from both retrieval methods
Reranking Layer
- Cross-Encoder Reranker - Precisely scores document-query pairs for relevance
- Score Fusion - Intelligently combines original retrieval scores with reranker scores
Generation Layer
- Context Builder - Formats retrieved documents into a prompt context
- LLM (Gemini) - Generates natural language responses based on the retrieved context
Results
Method | MRR | Coverage | R@1 | R@10 | R@20 | MAP@20 |
---|---|---|---|---|---|---|
Hybrid + Reranking | 0.6082 | 88.99% | 48.2% | 82.7% | 88.4% | 62.4% |
Hybrid (BM25 + Vector) | 0.5801 | 88.20% | 43.1% | 83.3% | 87.5% | 59.2% |
BM25 Only | 0.5545 | 78.94% | 43.0% | 76.8% | 78.3% | 56.5% |
Vector Only | 0.4691 | 68.09% | 36.4% | 66.6% | 67.3% | 47.1% |
Evaluation conducted on train_qna.csv
Installation
- Clone the repository:
git clone https://github.com/fisherman611/vietnamese-legal-chatbot.git
cd vietnamese-legal-chatbot
- Install dependencies:
pip install -r requirements.txt
- Configure environment variables:
# Create .env file with your API keys
GOOGLE_API_KEY=your_google_api_key
QDRANT_URL=your_qdrant_url # Optional for cloud deployment
QDRANT_API_KEY=your_qdrant_api_key # Optional for cloud deployment
- Run the setup script:
python setup_system.py
- Launch the application:
python app.py
References
[1] T. N. Ba, V. D. The, T. P. Quang, and T. T. Van. Vietnamese legal information retrieval in question-answering system, 2024. URL https://arxivorg/abs/2409.13699.
[2] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H.Küttler, M. Lewis, W. tau Yih, T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https://arxiv.org/abs/2005.11401.
[3] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, M. Wang, and H. Wang. Retrieval-augmented generation for large language models: A survey, 2024. URL https://arxiv.org/abs/2312.10997.
[4] J. Rayo, R. de la Rosa, and M. Garrido. A hybrid approach to information retrieval and answer generation for regulatory texts, 2025. URL https://arxiv.org/abs/2502.16767.
[5] BM25 retriever
License
This project is licensed under the MIT License.