Magic-Drawings / app.py
fantos's picture
Update app.py
cdc202d verified
raw
history blame
13.1 kB
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
import io
import base64
import json
from datetime import datetime
import torch.nn.functional as F
# Force CPU mode for Zero GPU environment
device = torch.device('cpu')
torch.set_num_threads(4) # Optimize CPU performance
# Style presets
STYLE_PRESETS = {
"Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0},
"Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8},
"Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2},
"High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7},
}
# History management
class HistoryManager:
def __init__(self, max_entries=10):
self.max_entries = max_entries
self.history_file = "processing_history.json"
self.history = self.load_history()
def load_history(self):
try:
if os.path.exists(self.history_file):
with open(self.history_file, 'r') as f:
return json.load(f)
return []
except Exception:
return []
def save_history(self):
try:
with open(self.history_file, 'w') as f:
json.dump(self.history[-self.max_entries:], f)
except Exception as e:
print(f"Error saving history: {e}")
def add_entry(self, input_path, settings):
entry = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"input_file": os.path.basename(input_path),
"settings": settings
}
self.history.append(entry)
if len(self.history) > self.max_entries:
self.history.pop(0)
self.save_history()
def get_latest_settings(self):
if self.history:
return self.history[-1]["settings"]
return None
# Initialize history manager
history_manager = HistoryManager()
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features) ]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
# Residual blocks
model2 = []
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
# Initialize models
def load_models():
try:
print("Initializing models in CPU mode...")
model1 = Generator(3, 1, 3)
model2 = Generator(3, 1, 3)
model1.load_state_dict(torch.load('model.pth', map_location='cpu'))
model2.load_state_dict(torch.load('model2.pth', map_location='cpu'))
model1.eval()
model2.eval()
torch.set_grad_enabled(False)
print("Models loaded successfully in CPU mode")
return model1, model2
except Exception as e:
error_msg = f"Error loading models: {str(e)}"
print(error_msg)
raise gr.Error("Failed to initialize models. Please check the model files and system configuration.")
# Load models
try:
print("Starting model initialization...")
model1, model2 = load_models()
print("Model initialization completed")
except Exception as e:
print(f"Critical error during model initialization: {str(e)}")
raise gr.Error("Failed to start the application due to model initialization error.")
def apply_preset(preset_name):
"""Apply a style preset and return the settings"""
if preset_name in STYLE_PRESETS:
return (
STYLE_PRESETS[preset_name]["line_thickness"],
STYLE_PRESETS[preset_name]["contrast"],
STYLE_PRESETS[preset_name]["brightness"],
True # Enable enhancement for presets
)
return (1.0, 1.0, 1.0, False)
def enhance_lines(img, contrast=1.0, brightness=1.0):
"""Enhance line drawing with contrast and brightness adjustments"""
enhanced = np.array(img)
enhanced = enhanced * contrast
enhanced = np.clip(enhanced + brightness, 0, 1)
return Image.fromarray((enhanced * 255).astype(np.uint8))
def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0,
brightness=1.0, enable_enhancement=False, output_size="Original"):
try:
# Apply preset if selected
if preset_name != "Custom":
line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name)
# Open and process input image
original_img = Image.open(input_img)
original_size = original_img.size
# Adjust output size
if output_size != "Original":
width, height = map(int, output_size.split("x"))
target_size = (width, height)
else:
target_size = original_size
# Transform pipeline
transform = transforms.Compose([
transforms.Resize(256, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
input_tensor = transform(original_img).unsqueeze(0).to(device)
# Process through selected model
with torch.no_grad():
if version == 'Simple Lines':
output = model2(input_tensor)
else:
output = model1(input_tensor)
# Apply line thickness adjustment
output = output * line_thickness
# Convert to image
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
# Apply enhancements if enabled
if enable_enhancement:
output_img = enhance_lines(output_img, contrast, brightness)
# Resize to target size
output_img = output_img.resize(target_size, Image.BICUBIC)
# Save to history
settings = {
"version": version,
"preset": preset_name,
"line_thickness": line_thickness,
"contrast": contrast,
"brightness": brightness,
"enable_enhancement": enable_enhancement,
"output_size": output_size
}
history_manager.add_entry(input_img, settings)
return output_img
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
# Custom CSS
custom_css = """
.gradio-container {
font-family: 'Helvetica Neue', Arial, sans-serif;
max-width: 1200px !important;
margin: auto;
}
.gr-button {
border-radius: 8px;
background: linear-gradient(45deg, #3498db, #2980b9);
border: none;
color: white;
transition: all 0.3s ease;
}
.gr-button:hover {
background: linear-gradient(45deg, #2980b9, #3498db);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
}
.gr-button.secondary {
background: linear-gradient(45deg, #95a5a6, #7f8c8d);
}
.gr-input {
border-radius: 8px;
border: 2px solid #3498db;
transition: all 0.3s ease;
}
.gr-input:focus {
border-color: #2980b9;
box-shadow: 0 0 0 2px rgba(41,128,185,0.2);
}
.gr-form {
border-radius: 12px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
padding: 20px;
}
.gr-header {
text-align: center;
margin-bottom: 2em;
}
"""
# Create Gradio interface
with gr.Blocks(css=custom_css) as iface:
with gr.Row(elem_classes="gr-header"):
gr.Markdown("# 🎨 Advanced Line Drawing Generator")
gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="filepath", label="Upload Image")
with gr.Row():
version = gr.Radio(
choices=['Complex Lines', 'Simple Lines'],
value='Simple Lines',
label="Drawing Style"
)
preset_selector = gr.Dropdown(
choices=["Custom"] + list(STYLE_PRESETS.keys()),
value="Custom",
label="Style Preset"
)
with gr.Accordion("Advanced Settings", open=False):
output_size = gr.Dropdown(
choices=["Original", "512x512", "1024x1024", "2048x2048"],
value="Original",
label="Output Size"
)
line_thickness = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Line Thickness"
)
enable_enhancement = gr.Checkbox(
label="Enable Enhancement",
value=False
)
with gr.Group(visible=False) as enhancement_controls:
contrast = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Contrast"
)
brightness = gr.Slider(
minimum=0.5,
maximum=1.5,
value=1.0,
step=0.1,
label="Brightness"
)
with gr.Column(scale=1):
output_image = gr.Image(type="pil", label="Generated Line Drawing")
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary", size="lg")
clear_btn = gr.Button("Clear", variant="secondary", size="lg")
# Event handlers
enable_enhancement.change(
fn=lambda x: gr.Group(visible=x),
inputs=[enable_enhancement],
outputs=[enhancement_controls]
)
preset_selector.change(
fn=apply_preset,
inputs=[preset_selector],
outputs=[line_thickness, contrast, brightness, enable_enhancement]
)
generate_btn.click(
fn=predict,
inputs=[
input_image,
version,
preset_selector,
line_thickness,
contrast,
brightness,
enable_enhancement,
output_size
],
outputs=output_image
)
clear_btn.click(
fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"),
inputs=[],
outputs=[
input_image,
version,
preset_selector,
line_thickness,
contrast,
brightness,
enable_enhancement,
output_size
]
)
# Launch the interface
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False
)