File size: 13,134 Bytes
3b6ad82
 
 
 
 
 
2cdbfb7
9c857dc
 
 
 
2cdbfb7
 
8a9898f
 
 
3b6ad82
9c857dc
 
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
3b6ad82
9c857dc
 
3b6ad82
cdc202d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b6ad82
9c857dc
 
 
 
 
 
 
 
 
 
3b6ad82
cdc202d
 
 
 
 
 
2cdbfb7
9c857dc
 
2cdbfb7
9c857dc
 
 
 
2cdbfb7
 
 
9c857dc
 
 
 
 
 
 
 
2cdbfb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c857dc
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdbfb7
 
 
 
 
 
cdc202d
2cdbfb7
 
 
9c857dc
 
2cdbfb7
 
 
 
 
 
9c857dc
2cdbfb7
 
 
 
9c857dc
 
 
 
2cdbfb7
 
 
 
9c857dc
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdbfb7
 
 
cdc202d
2cdbfb7
9c857dc
 
 
2cdbfb7
 
9c857dc
2cdbfb7
9c857dc
 
 
 
 
 
 
 
 
 
 
 
2cdbfb7
 
9c857dc
 
 
 
 
 
2cdbfb7
 
 
 
 
 
 
9c857dc
2cdbfb7
 
 
 
9c857dc
2cdbfb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c857dc
 
2cdbfb7
9c857dc
 
 
2cdbfb7
9c857dc
 
 
 
 
 
2cdbfb7
9c857dc
 
 
 
 
2cdbfb7
 
 
 
 
 
9c857dc
2cdbfb7
 
 
9c857dc
 
2cdbfb7
 
 
 
 
9c857dc
2cdbfb7
 
 
 
9c857dc
2cdbfb7
 
 
9c857dc
 
2cdbfb7
 
3b6ad82
2cdbfb7
8a9898f
9c857dc
 
 
 
8a9898f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
import io
import base64
import json
from datetime import datetime
import torch.nn.functional as F

# Force CPU mode for Zero GPU environment
device = torch.device('cpu')
torch.set_num_threads(4)  # Optimize CPU performance

# Style presets
STYLE_PRESETS = {
    "Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0},
    "Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8},
    "Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2},
    "High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7},
}

# History management
class HistoryManager:
    def __init__(self, max_entries=10):
        self.max_entries = max_entries
        self.history_file = "processing_history.json"
        self.history = self.load_history()

    def load_history(self):
        try:
            if os.path.exists(self.history_file):
                with open(self.history_file, 'r') as f:
                    return json.load(f)
            return []
        except Exception:
            return []

    def save_history(self):
        try:
            with open(self.history_file, 'w') as f:
                json.dump(self.history[-self.max_entries:], f)
        except Exception as e:
            print(f"Error saving history: {e}")

    def add_entry(self, input_path, settings):
        entry = {
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "input_file": os.path.basename(input_path),
            "settings": settings
        }
        self.history.append(entry)
        if len(self.history) > self.max_entries:
            self.history.pop(0)
        self.save_history()

    def get_latest_settings(self):
        if self.history:
            return self.history[-1]["settings"]
        return None

# Initialize history manager
history_manager = HistoryManager()

norm_layer = nn.InstanceNorm2d

class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()
        
        conv_block = [  nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features),
                        nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features)  ]
        
        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)

class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()
        
        # Initial convolution block
        model0 = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    norm_layer(64),
                    nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)

        # Downsampling
        model1 = []
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model1 += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2
        self.model1 = nn.Sequential(*model1)

        # Residual blocks
        model2 = []
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)

        # Upsampling
        model3 = []
        out_features = in_features//2
        for _ in range(2):
            model3 += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2
        self.model3 = nn.Sequential(*model3)

        # Output layer
        model4 = [  nn.ReflectionPad2d(3),
                    nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]
            
        self.model4 = nn.Sequential(*model4)

    def forward(self, x):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)
        return out

# Initialize models
def load_models():
    try:
        print("Initializing models in CPU mode...")
        model1 = Generator(3, 1, 3)
        model2 = Generator(3, 1, 3)
        
        model1.load_state_dict(torch.load('model.pth', map_location='cpu'))
        model2.load_state_dict(torch.load('model2.pth', map_location='cpu'))
        
        model1.eval()
        model2.eval()
        torch.set_grad_enabled(False)
        
        print("Models loaded successfully in CPU mode")
        return model1, model2
    except Exception as e:
        error_msg = f"Error loading models: {str(e)}"
        print(error_msg)
        raise gr.Error("Failed to initialize models. Please check the model files and system configuration.")

# Load models
try:
    print("Starting model initialization...")
    model1, model2 = load_models()
    print("Model initialization completed")
except Exception as e:
    print(f"Critical error during model initialization: {str(e)}")
    raise gr.Error("Failed to start the application due to model initialization error.")

def apply_preset(preset_name):
    """Apply a style preset and return the settings"""
    if preset_name in STYLE_PRESETS:
        return (
            STYLE_PRESETS[preset_name]["line_thickness"],
            STYLE_PRESETS[preset_name]["contrast"],
            STYLE_PRESETS[preset_name]["brightness"],
            True  # Enable enhancement for presets
        )
    return (1.0, 1.0, 1.0, False)

def enhance_lines(img, contrast=1.0, brightness=1.0):
    """Enhance line drawing with contrast and brightness adjustments"""
    enhanced = np.array(img)
    enhanced = enhanced * contrast
    enhanced = np.clip(enhanced + brightness, 0, 1)
    return Image.fromarray((enhanced * 255).astype(np.uint8))

def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0, 
           brightness=1.0, enable_enhancement=False, output_size="Original"):
    try:
        # Apply preset if selected
        if preset_name != "Custom":
            line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name)

        # Open and process input image
        original_img = Image.open(input_img)
        original_size = original_img.size

        # Adjust output size
        if output_size != "Original":
            width, height = map(int, output_size.split("x"))
            target_size = (width, height)
        else:
            target_size = original_size

        # Transform pipeline
        transform = transforms.Compose([
            transforms.Resize(256, Image.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        
        input_tensor = transform(original_img).unsqueeze(0).to(device)
        
        # Process through selected model
        with torch.no_grad():
            if version == 'Simple Lines':
                output = model2(input_tensor)
            else:
                output = model1(input_tensor)
            
            # Apply line thickness adjustment
            output = output * line_thickness
        
        # Convert to image
        output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
        
        # Apply enhancements if enabled
        if enable_enhancement:
            output_img = enhance_lines(output_img, contrast, brightness)
        
        # Resize to target size
        output_img = output_img.resize(target_size, Image.BICUBIC)
        
        # Save to history
        settings = {
            "version": version,
            "preset": preset_name,
            "line_thickness": line_thickness,
            "contrast": contrast,
            "brightness": brightness,
            "enable_enhancement": enable_enhancement,
            "output_size": output_size
        }
        history_manager.add_entry(input_img, settings)
        
        return output_img
        
    except Exception as e:
        raise gr.Error(f"Error processing image: {str(e)}")

# Custom CSS
custom_css = """
.gradio-container {
    font-family: 'Helvetica Neue', Arial, sans-serif;
    max-width: 1200px !important;
    margin: auto;
}
.gr-button {
    border-radius: 8px;
    background: linear-gradient(45deg, #3498db, #2980b9);
    border: none;
    color: white;
    transition: all 0.3s ease;
}
.gr-button:hover {
    background: linear-gradient(45deg, #2980b9, #3498db);
    transform: translateY(-2px);
    box-shadow: 0 4px 12px rgba(0,0,0,0.15);
}
.gr-button.secondary {
    background: linear-gradient(45deg, #95a5a6, #7f8c8d);
}
.gr-input {
    border-radius: 8px;
    border: 2px solid #3498db;
    transition: all 0.3s ease;
}
.gr-input:focus {
    border-color: #2980b9;
    box-shadow: 0 0 0 2px rgba(41,128,185,0.2);
}
.gr-form {
    border-radius: 12px;
    box-shadow: 0 4px 12px rgba(0,0,0,0.1);
    padding: 20px;
}
.gr-header {
    text-align: center;
    margin-bottom: 2em;
}
"""

# Create Gradio interface
with gr.Blocks(css=custom_css) as iface:
    with gr.Row(elem_classes="gr-header"):
        gr.Markdown("# 🎨 Advanced Line Drawing Generator")
        gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(type="filepath", label="Upload Image")
            
            with gr.Row():
                version = gr.Radio(
                    choices=['Complex Lines', 'Simple Lines'],
                    value='Simple Lines',
                    label="Drawing Style"
                )
                preset_selector = gr.Dropdown(
                    choices=["Custom"] + list(STYLE_PRESETS.keys()),
                    value="Custom",
                    label="Style Preset"
                )
            
            with gr.Accordion("Advanced Settings", open=False):
                output_size = gr.Dropdown(
                    choices=["Original", "512x512", "1024x1024", "2048x2048"],
                    value="Original",
                    label="Output Size"
                )
                
                line_thickness = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    label="Line Thickness"
                )
                
                enable_enhancement = gr.Checkbox(
                    label="Enable Enhancement",
                    value=False
                )
                
                with gr.Group(visible=False) as enhancement_controls:
                    contrast = gr.Slider(
                        minimum=0.5,
                        maximum=2.0,
                        value=1.0,
                        step=0.1,
                        label="Contrast"
                    )
                    brightness = gr.Slider(
                        minimum=0.5,
                        maximum=1.5,
                        value=1.0,
                        step=0.1,
                        label="Brightness"
                    )
        
        with gr.Column(scale=1):
            output_image = gr.Image(type="pil", label="Generated Line Drawing")
            with gr.Row():
                generate_btn = gr.Button("Generate", variant="primary", size="lg")
                clear_btn = gr.Button("Clear", variant="secondary", size="lg")
    
    # Event handlers
    enable_enhancement.change(
        fn=lambda x: gr.Group(visible=x),
        inputs=[enable_enhancement],
        outputs=[enhancement_controls]
    )
    
    preset_selector.change(
        fn=apply_preset,
        inputs=[preset_selector],
        outputs=[line_thickness, contrast, brightness, enable_enhancement]
    )
    
    generate_btn.click(
        fn=predict,
        inputs=[
            input_image,
            version,
            preset_selector,
            line_thickness,
            contrast,
            brightness,
            enable_enhancement,
            output_size
        ],
        outputs=output_image
    )
    
    clear_btn.click(
        fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"),
        inputs=[],
        outputs=[
            input_image,
            version,
            preset_selector,
            line_thickness,
            contrast,
            brightness,
            enable_enhancement,
            output_size
        ]
    )

# Launch the interface
iface.launch(
    server_name="0.0.0.0",
    server_port=7860,
    share=False,
    debug=False
)