Spaces:
Sleeping
Sleeping
from functools import partial | |
import json | |
# from datasets import load_dataset | |
import gradio as gr | |
# from huggingface_hub import get_hf_file_metadata, HfApi, hf_hub_download, hf_hub_url | |
# from huggingface_hub.repocard import metadata_load | |
import pandas as pd | |
import numpy as np | |
DATASETS = { | |
"samsum": "SAMSum", | |
"cnn": "CNN/DailyMail", | |
"xsum": "XSum", | |
"billsum": "BillSum", | |
"multinews": "Multi-News", | |
} | |
MODELS = [ | |
"PEGASUS", #0 | |
"PEGASUS-X", #1 | |
"MTL-ABS", #2 | |
"BART SDPT/DAPT/TAPT", #3 | |
"Prefix-tuning", #4 | |
"ExtraPhrase", #5 | |
"Primera", #6 | |
"Se3", #7 | |
"DADS", #8 | |
"LML-LRS", #9 | |
"PSP", #10 | |
"Athena", #11 | |
"SPEC", #12 | |
"Z-Code++", #13 | |
"DIONYSUS", #14 | |
"COMPO", #15 | |
"UNISUMM", #16 | |
"Centrum", #17 | |
"ParaSum", #18 | |
"EFLRAS", #19 | |
] | |
REPOS_PAPERS = { | |
"PEGASUS": "https://github.com/google-research/pegasus", #0 | |
"PEGASUS-X": "https://github.com/google-research/pegasus", #1 | |
"MTL-ABS": "https://github.com/YiSyuanChen/MTL-ABS", #2 | |
"BART SDPT/DAPT/TAPT": "https://github.com/TysonYu/AdaptSum", #3 | |
"Prefix-tuning": "https://github.com/XiangLi1999/PrefixTuning", #4 | |
"ExtraPhrase": "https://github.com/loem-ms/ExtraPhrase", #5 | |
"Primera": "https://github.com/allenai/PRIMER", #6 | |
"Se3": "https://ojs.aaai.org/index.php/AAAI/article/view/21357", #7 | |
"DADS": "https://aclanthology.org/2022.findings-naacl.53.pdf", #8 | |
"LML-LRS": "https://dl.acm.org/doi/pdf/10.1145/3477495.3531908", #9 | |
"PSP": "https://aclanthology.org/2022.coling-1.553.pdf", #10 | |
"Athena": "https://www.sciencedirect.com/science/article/pii/S0925231223004794?casa_token=ptLMl-LZLbQAAAAA:9Aq7HEUf6dRrIg5MTj4hZm2eaWJSeTDKmnXxS52fkZ131ejkYHdZgGimL0TFCFXy57qF1k9KTKE", #11 | |
"SPEC": "https://github.com/YiSyuanChen/SPEC", #12 | |
"Z-Code++": "https://arxiv.org/pdf/2208.09770.pdf", #13 | |
"DIONYSUS": "https://arxiv.org/pdf/2212.10018.pdf", #14 | |
"COMPO": "https://github.com/ozyyshr/Compo", #15 | |
"UNISUMM": "https://github.com/microsoft/UniSumm", #16 | |
"Centrum": "https://github.com/ratishsp/centrum", #17 | |
"ParaSum": "https://link.springer.com/chapter/10.1007/978-3-031-40289-0_9", #18 | |
"EFLRAS": "https://github.com/NLPlab-skku/SummaryXAI-QA/tree/main/Low-Resource-Sum", #19 | |
} | |
TAXONOMY = [ | |
"Pre-training", #0 | |
"Centroid-based pre-training", #1 | |
"Data augmentation", #2 | |
"Segmentation", #3 | |
"Meta-learning", #4 | |
"Meta-transfer", #5 | |
"Extractive summarization", #6 | |
"Prefix tuning", #7 | |
] | |
MODEL_TO_TAXONOMY = [ | |
TAXONOMY[0], | |
TAXONOMY[0], | |
TAXONOMY[5], | |
TAXONOMY[0], | |
TAXONOMY[7], | |
TAXONOMY[2], | |
TAXONOMY[0], | |
TAXONOMY[3], | |
TAXONOMY[2], | |
TAXONOMY[4], | |
TAXONOMY[0], | |
TAXONOMY[3], | |
TAXONOMY[5], | |
TAXONOMY[0], | |
TAXONOMY[0], | |
TAXONOMY[2], | |
TAXONOMY[0], | |
TAXONOMY[1], | |
TAXONOMY[6], | |
TAXONOMY[5], | |
] | |
model_tax = np.array([MODELS, MODEL_TO_TAXONOMY]).transpose() | |
SAMSUM_DATA = [ | |
[model_tax[14][0], "base", model_tax[14][1], 0, 0, 39.60, 15.40, 30.10], | |
[model_tax[14][0], "large", model_tax[14][1], 0, 0, 41.30, 16.20, 30.90], | |
[model_tax[3][0], "SDPT w/RecAdam", model_tax[3][1], 300, 0, 45.23, 19.43, 35.37], | |
[model_tax[3][0], "DAPT", model_tax[3][1], 300, 0, 41.22, 17.88, 32.40], | |
[model_tax[3][0], "TAPT w/RecAdam", model_tax[3][1], 300, 0, 41.34, 17.88, 32.31], | |
[model_tax[13][0], "large", model_tax[13][1], 0, 0, 26.50, 7.90, 20.50], | |
[model_tax[13][0], "large", model_tax[13][1], 10, 0, 40.27, 17.40, 33.70], | |
[model_tax[13][0], "large", model_tax[13][1], 100, 0, 47.60, 22.30, 38.70], | |
[model_tax[16][0], "", model_tax[16][1], 0, 0, 22.17, 6.88, 17.08], | |
[model_tax[16][0], "", model_tax[16][1], 10, 0, 43.89, 18.53, 34.76], | |
[model_tax[16][0], "", model_tax[16][1], 100, 0, 46.93, 20.65, 37.28], | |
[model_tax[8][0], "", model_tax[8][1], 10, 0, 32.50, 12.00, 27.00], | |
[model_tax[8][0], "", model_tax[8][1], 100, 0, 43.90, 19.70, 36.10], | |
[model_tax[15][0], "base, self-training", model_tax[15][1], 147, 0, 45.42, 21.23, 41.42], | |
[model_tax[15][0], "large, self-training", model_tax[15][1], 147, 0, 49.78, 24.65, 45.41], | |
[model_tax[15][0], "base, joint-training", model_tax[15][1], 147, 0, 44.89, 20.64, 40.58], | |
[model_tax[15][0], "large, joint-training", model_tax[15][1], 147, 0, 49.14, 23.45, 44.35], | |
[model_tax[12][0], "", model_tax[12][1], 10, 0, 46.06, 20.90, 40.34], | |
[model_tax[12][0], "", model_tax[12][1], 100, 0, 51.94, 24.75, 46.97], | |
] | |
CNN_DATA = [ | |
[model_tax[13][0], "large", model_tax[13][1], 0, 0, 40.00, 17.30, 25.30], | |
[model_tax[13][0], "large", model_tax[13][1], 10, 0, 40.00, 17.30, 25.30], | |
[model_tax[13][0], "large", model_tax[13][1], 100, 0, 41.10, 18.40, 27.50], | |
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 32.90, 13.28, 29.38], | |
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 37.25, 15.84, 33.49], | |
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 40.28, 18.21, 37.03], | |
[model_tax[1][0], "large", model_tax[1][1], 0, 0, 30.22, 11.88, 28.31], | |
[model_tax[1][0], "large", model_tax[1][1], 10, 0, 36.12, 13.70, 30.26], | |
[model_tax[1][0], "large", model_tax[1][1], 100, 0, 38.40, 17.02, 36.75], | |
[model_tax[10][0], "", model_tax[10][1], 300, 0, 38.31, 15.94, 25.41], | |
[model_tax[5][0], "", model_tax[5][1], 1000, 0, 34.47, 12.91, 31.36], | |
[model_tax[9][0], "", model_tax[9][1], 10, 0, 39.34, 16.53, 25.40], | |
[model_tax[9][0], "", model_tax[9][1], 100, 0, 39.94, 16.96, 26.09], | |
[model_tax[19][0], "", model_tax[19][1], 10, 0, 39.50, 16.80, 25.72], | |
[model_tax[19][0], "", model_tax[19][1], 100, 0, 40.53, 17.61, 26.64], | |
[model_tax[18][0], "", model_tax[18][1], 200, 0, 40.81, 17.78, 36.94], | |
] | |
BILLSUM_DATA = [ | |
[model_tax[0][0], "large", model_tax[0][0], 0, 0, 41.02, 17.44, 25.24], | |
[model_tax[0][0], "large", model_tax[0][0], 10, 0, 40.48, 18.49, 27.27], | |
[model_tax[0][0], "large", model_tax[0][0], 100, 0, 44.78, 26.40, 34.40], | |
[model_tax[1][0], "large", model_tax[1][1], 0, 0, 41.32, 18.04, 25.11], | |
[model_tax[1][0], "large", model_tax[1][1], 10, 0, 42.55, 18.97, 26.92], | |
[model_tax[1][0], "large", model_tax[1][1], 100, 0, 46.48, 27.77, 36.53], | |
[model_tax[7][0], "LED base(512) w/Se3", model_tax[7][1], 10, 0, 46.94, 23.04, 29.29], | |
[model_tax[7][0], "LED base(512) w/Se3", model_tax[7][1], 100, 0, 50.4, 27.73, 33.74], | |
[model_tax[11][0], "", model_tax[11][1], 10, 0, 47.57, 24.14, 30.35], | |
[model_tax[11][0], "", model_tax[11][1], 100, 0, 51.59, 29.36, 35.04], | |
[model_tax[9][0], "", model_tax[9][1], 10, 0, 46.64, 25.07, 30.90], | |
[model_tax[9][0], "", model_tax[9][1], 100, 0, 48.18, 27.18, 33.28], | |
[model_tax[2][0], "", model_tax[2][1], 10, 0, 41.22, 18.61, 26.33], | |
[model_tax[2][0], "", model_tax[2][1], 100, 0, 45.29, 22.74, 29.56], | |
[model_tax[19][0], "", model_tax[19][1], 10, 0, 46.64, 25.07, 30.90], | |
[model_tax[19][0], "", model_tax[19][1], 100, 0, 48.18, 27.18, 33.28], | |
] | |
XSUM_DATA = [ | |
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 19.27, 3.00, 12.72], | |
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 19.39, 3.45, 14.02], | |
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 39.07, 16.44, 31.27], | |
[model_tax[10][0], "", model_tax[10][1], 300, 0, 32.86, 11.27, 25.64], | |
[model_tax[16][0], "", model_tax[16][1], 0, 0, 20.72, 3.62, 16.56], | |
[model_tax[16][0], "", model_tax[16][1], 10, 0, 26.10, 7.20, 19.92], | |
[model_tax[16][0], "", model_tax[16][1], 100, 0, 33.33, 11.36, 25.85], | |
[model_tax[9][0], "", model_tax[9][1], 10, 0, 32.35, 11.86, 25.33], | |
[model_tax[9][0], "", model_tax[9][1], 100, 0, 35.54, 13.94, 27.79], | |
[model_tax[19][0], "", model_tax[19][1], 10, 0, 32.65, 12.10, 25.82], | |
[model_tax[19][0], "", model_tax[19][1], 100, 0, 36.51, 14.55, 29.01], | |
[model_tax[12][0], "", model_tax[12][1], 10, 0, 32.74, 10.90, 24.86], | |
[model_tax[12][0], "", model_tax[12][1], 100, 0, 35.69, 12.88, 27.25], | |
[model_tax[18][0], "", model_tax[18][1], 1000, 0, 21.15, 3.08, 15.91], | |
[model_tax[4][0], "", model_tax[4][1], 100, 0, 35.20, 13.30, 28.10], | |
] | |
MN_DATA = [ | |
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 36.54, 10.52, 18.67], | |
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 39.79, 12.56, 20.06], | |
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 41.04, 13.88, 21.52], | |
[model_tax[6][0], "", model_tax[6][1], 0, 0, 39.09, 13.91, 19.19], | |
[model_tax[6][0], "", model_tax[6][1], 10, 0, 44.02, 15.54, 22.03], | |
[model_tax[6][0], "", model_tax[6][1], 100, 0, 46.01, 16.76, 22.91], | |
[model_tax[17][0], "", model_tax[17][1], 0, 0, 43.5, 15.7, 22.4], | |
[model_tax[17][0], "", model_tax[17][1], 10, 0, 43.4, 16.6, 22.2], | |
[model_tax[17][0], "", model_tax[17][1], 100, 0, 45.7, 16.8, 23.2], | |
[model_tax[19][0], "", model_tax[19][1], 10, 0, 43.60, 14.85, 20.70], | |
[model_tax[19][0], "", model_tax[19][1], 100, 0, 45.55, 16.01, 22.12], | |
[model_tax[2][0], "", model_tax[2][1], 10, 0, 38.88, 12.78, 19.88], | |
[model_tax[2][0], "", model_tax[2][1], 100, 0, 39.64, 13.64, 20.45], | |
] | |
COL_NAMES = [ | |
"Rank", | |
"Model", | |
"Additional info", | |
"Taxonomy", | |
"Training samples", | |
"ROUGE", | |
"ROUGE-1", | |
"ROUGE-2", | |
"ROUGE-L", | |
] | |
data = { | |
"samsum": pd.DataFrame(SAMSUM_DATA), | |
"cnn": pd.DataFrame(CNN_DATA), | |
"billsum": pd.DataFrame(BILLSUM_DATA), | |
"xsum": pd.DataFrame(XSUM_DATA), | |
"multinews": pd.DataFrame(MN_DATA), | |
} | |
def make_clickable(text, url): | |
return "<u>[{}]({})</u>".format(text, url) | |
for dataset in data: | |
data[dataset].columns = COL_NAMES[1:] | |
data[dataset]["ROUGE"] = np.around(np.mean(data[dataset][["ROUGE-1", "ROUGE-2", "ROUGE-L"]], axis=1), decimals=2) | |
data[dataset].sort_values("ROUGE", ascending=False, inplace=True) # to default sort by ROUGE | |
# Add Rank column | |
data[dataset].insert(0, COL_NAMES[0], range(1, 1 + len(data[dataset]))) | |
# Add link to papers/repos | |
data[dataset]["Model"] = data[dataset]["Model"].apply(lambda x: make_clickable(x, REPOS_PAPERS[x])) | |
print(data[dataset]["Model"]) | |
# data[dataset].drop("ROUGE", axis=1, inplace=True) | |
NUM_DATASETS = len(set(DATASETS)) | |
NUM_MODELS = len(set(MODELS)) | |
block = gr.Blocks() | |
with block: | |
gr.Markdown(f""" | |
Low-Resource Summarization (LRS) Leaderboard. 🤗 Refer to the [Survey on LRS](the paper will be published soon) for details on metrics, taxonomy and models. | |
- **Total Datasets**: {NUM_DATASETS} | |
- **Total Models**: {NUM_MODELS} | |
- **Metric**: ROUGE Score | |
""") | |
with gr.Tabs(): | |
for dataset in data: | |
dataset_name = DATASETS[dataset] | |
with gr.TabItem(dataset_name): | |
with gr.Row(): | |
gr.Markdown(f""" | |
**{dataset_name}** leaderboard | |
- **ROUGE** is the average of ROUGE-1, ROUGE-2 and ROUGE-L | |
- **RANK** is defined following ROUGE column values | |
""") | |
with gr.Row(): | |
data_classification = gr.components.Dataframe( | |
data[dataset], | |
datatype=["markdown", "markdown", "markdown", "number", "number", "number", "number", "number"], | |
type="pandas", | |
) | |
# gr.Markdown(r""" | |
# Made with ❤️ for NLP. If this work is useful to you, please consider citing: | |
# citare il survey!!! | |
# ```bibtex | |
# @article{muennighoff2022mteb, | |
# doi = {10.48550/ARXIV.2210.07316}, | |
# url = {https://arxiv.org/abs/2210.07316}, | |
# author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, | |
# title = {MTEB: Massive Text Embedding Benchmark}, | |
# publisher = {arXiv}, | |
# journal={arXiv preprint arXiv:2210.07316}, | |
# year = {2022} | |
# } | |
# ``` | |
# """) | |
block.queue(max_size=10) | |
block.launch(share=True) |