Spaces:
Sleeping
Sleeping
File size: 11,939 Bytes
49d7409 3a712d8 5d862ed 3a712d8 db1d4bd 3a712d8 b600a7f 3a712d8 db1d4bd 3a712d8 209ab3b 3a712d8 b600a7f 3a712d8 b600a7f 3a712d8 b600a7f 3a712d8 db1d4bd 49d7409 7bfe0bf fb2a4c4 49d7409 7bfe0bf db1d4bd 3a712d8 db1d4bd 3a712d8 db1d4bd 3a712d8 944f7de db1d4bd 944f7de db1d4bd 944f7de db1d4bd 944f7de 49d7409 7bfe0bf 3a712d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from functools import partial
import json
# from datasets import load_dataset
import gradio as gr
# from huggingface_hub import get_hf_file_metadata, HfApi, hf_hub_download, hf_hub_url
# from huggingface_hub.repocard import metadata_load
import pandas as pd
import numpy as np
DATASETS = {
"samsum": "SAMSum",
"cnn": "CNN/DailyMail",
"xsum": "XSum",
"billsum": "BillSum",
"multinews": "Multi-News",
}
MODELS = [
"PEGASUS", #0
"PEGASUS-X", #1
"MTL-ABS", #2
"BART SDPT/DAPT/TAPT", #3
"Prefix-tuning", #4
"ExtraPhrase", #5
"Primera", #6
"Se3", #7
"DADS", #8
"LML-LRS", #9
"PSP", #10
"Athena", #11
"SPEC", #12
"Z-Code++", #13
"DIONYSUS", #14
"COMPO", #15
"UNISUMM", #16
"Centrum", #17
"ParaSum", #18
"EFLRAS", #19
]
REPOS_PAPERS = {
"PEGASUS": "https://github.com/google-research/pegasus", #0
"PEGASUS-X": "https://github.com/google-research/pegasus", #1
"MTL-ABS": "https://github.com/YiSyuanChen/MTL-ABS", #2
"BART SDPT/DAPT/TAPT": "https://github.com/TysonYu/AdaptSum", #3
"Prefix-tuning": "https://github.com/XiangLi1999/PrefixTuning", #4
"ExtraPhrase": "https://github.com/loem-ms/ExtraPhrase", #5
"Primera": "https://github.com/allenai/PRIMER", #6
"Se3": "https://ojs.aaai.org/index.php/AAAI/article/view/21357", #7
"DADS": "https://aclanthology.org/2022.findings-naacl.53.pdf", #8
"LML-LRS": "https://dl.acm.org/doi/pdf/10.1145/3477495.3531908", #9
"PSP": "https://aclanthology.org/2022.coling-1.553.pdf", #10
"Athena": "https://www.sciencedirect.com/science/article/pii/S0925231223004794?casa_token=ptLMl-LZLbQAAAAA:9Aq7HEUf6dRrIg5MTj4hZm2eaWJSeTDKmnXxS52fkZ131ejkYHdZgGimL0TFCFXy57qF1k9KTKE", #11
"SPEC": "https://github.com/YiSyuanChen/SPEC", #12
"Z-Code++": "https://arxiv.org/pdf/2208.09770.pdf", #13
"DIONYSUS": "https://arxiv.org/pdf/2212.10018.pdf", #14
"COMPO": "https://github.com/ozyyshr/Compo", #15
"UNISUMM": "https://github.com/microsoft/UniSumm", #16
"Centrum": "https://github.com/ratishsp/centrum", #17
"ParaSum": "https://link.springer.com/chapter/10.1007/978-3-031-40289-0_9", #18
"EFLRAS": "https://github.com/NLPlab-skku/SummaryXAI-QA/tree/main/Low-Resource-Sum", #19
}
TAXONOMY = [
"Pre-training", #0
"Centroid-based pre-training", #1
"Data augmentation", #2
"Segmentation", #3
"Meta-learning", #4
"Meta-transfer", #5
"Extractive summarization", #6
"Prefix tuning", #7
]
MODEL_TO_TAXONOMY = [
TAXONOMY[0],
TAXONOMY[0],
TAXONOMY[5],
TAXONOMY[0],
TAXONOMY[7],
TAXONOMY[2],
TAXONOMY[0],
TAXONOMY[3],
TAXONOMY[2],
TAXONOMY[4],
TAXONOMY[0],
TAXONOMY[3],
TAXONOMY[5],
TAXONOMY[0],
TAXONOMY[0],
TAXONOMY[2],
TAXONOMY[0],
TAXONOMY[1],
TAXONOMY[6],
TAXONOMY[5],
]
model_tax = np.array([MODELS, MODEL_TO_TAXONOMY]).transpose()
SAMSUM_DATA = [
[model_tax[14][0], "base", model_tax[14][1], 0, 0, 39.60, 15.40, 30.10],
[model_tax[14][0], "large", model_tax[14][1], 0, 0, 41.30, 16.20, 30.90],
[model_tax[3][0], "SDPT w/RecAdam", model_tax[3][1], 300, 0, 45.23, 19.43, 35.37],
[model_tax[3][0], "DAPT", model_tax[3][1], 300, 0, 41.22, 17.88, 32.40],
[model_tax[3][0], "TAPT w/RecAdam", model_tax[3][1], 300, 0, 41.34, 17.88, 32.31],
[model_tax[13][0], "large", model_tax[13][1], 0, 0, 26.50, 7.90, 20.50],
[model_tax[13][0], "large", model_tax[13][1], 10, 0, 40.27, 17.40, 33.70],
[model_tax[13][0], "large", model_tax[13][1], 100, 0, 47.60, 22.30, 38.70],
[model_tax[16][0], "", model_tax[16][1], 0, 0, 22.17, 6.88, 17.08],
[model_tax[16][0], "", model_tax[16][1], 10, 0, 43.89, 18.53, 34.76],
[model_tax[16][0], "", model_tax[16][1], 100, 0, 46.93, 20.65, 37.28],
[model_tax[8][0], "", model_tax[8][1], 10, 0, 32.50, 12.00, 27.00],
[model_tax[8][0], "", model_tax[8][1], 100, 0, 43.90, 19.70, 36.10],
[model_tax[15][0], "base, self-training", model_tax[15][1], 147, 0, 45.42, 21.23, 41.42],
[model_tax[15][0], "large, self-training", model_tax[15][1], 147, 0, 49.78, 24.65, 45.41],
[model_tax[15][0], "base, joint-training", model_tax[15][1], 147, 0, 44.89, 20.64, 40.58],
[model_tax[15][0], "large, joint-training", model_tax[15][1], 147, 0, 49.14, 23.45, 44.35],
[model_tax[12][0], "", model_tax[12][1], 10, 0, 46.06, 20.90, 40.34],
[model_tax[12][0], "", model_tax[12][1], 100, 0, 51.94, 24.75, 46.97],
]
CNN_DATA = [
[model_tax[13][0], "large", model_tax[13][1], 0, 0, 40.00, 17.30, 25.30],
[model_tax[13][0], "large", model_tax[13][1], 10, 0, 40.00, 17.30, 25.30],
[model_tax[13][0], "large", model_tax[13][1], 100, 0, 41.10, 18.40, 27.50],
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 32.90, 13.28, 29.38],
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 37.25, 15.84, 33.49],
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 40.28, 18.21, 37.03],
[model_tax[1][0], "large", model_tax[1][1], 0, 0, 30.22, 11.88, 28.31],
[model_tax[1][0], "large", model_tax[1][1], 10, 0, 36.12, 13.70, 30.26],
[model_tax[1][0], "large", model_tax[1][1], 100, 0, 38.40, 17.02, 36.75],
[model_tax[10][0], "", model_tax[10][1], 300, 0, 38.31, 15.94, 25.41],
[model_tax[5][0], "", model_tax[5][1], 1000, 0, 34.47, 12.91, 31.36],
[model_tax[9][0], "", model_tax[9][1], 10, 0, 39.34, 16.53, 25.40],
[model_tax[9][0], "", model_tax[9][1], 100, 0, 39.94, 16.96, 26.09],
[model_tax[19][0], "", model_tax[19][1], 10, 0, 39.50, 16.80, 25.72],
[model_tax[19][0], "", model_tax[19][1], 100, 0, 40.53, 17.61, 26.64],
[model_tax[18][0], "", model_tax[18][1], 200, 0, 40.81, 17.78, 36.94],
]
BILLSUM_DATA = [
[model_tax[0][0], "large", model_tax[0][0], 0, 0, 41.02, 17.44, 25.24],
[model_tax[0][0], "large", model_tax[0][0], 10, 0, 40.48, 18.49, 27.27],
[model_tax[0][0], "large", model_tax[0][0], 100, 0, 44.78, 26.40, 34.40],
[model_tax[1][0], "large", model_tax[1][1], 0, 0, 41.32, 18.04, 25.11],
[model_tax[1][0], "large", model_tax[1][1], 10, 0, 42.55, 18.97, 26.92],
[model_tax[1][0], "large", model_tax[1][1], 100, 0, 46.48, 27.77, 36.53],
[model_tax[7][0], "LED base(512) w/Se3", model_tax[7][1], 10, 0, 46.94, 23.04, 29.29],
[model_tax[7][0], "LED base(512) w/Se3", model_tax[7][1], 100, 0, 50.4, 27.73, 33.74],
[model_tax[11][0], "", model_tax[11][1], 10, 0, 47.57, 24.14, 30.35],
[model_tax[11][0], "", model_tax[11][1], 100, 0, 51.59, 29.36, 35.04],
[model_tax[9][0], "", model_tax[9][1], 10, 0, 46.64, 25.07, 30.90],
[model_tax[9][0], "", model_tax[9][1], 100, 0, 48.18, 27.18, 33.28],
[model_tax[2][0], "", model_tax[2][1], 10, 0, 41.22, 18.61, 26.33],
[model_tax[2][0], "", model_tax[2][1], 100, 0, 45.29, 22.74, 29.56],
[model_tax[19][0], "", model_tax[19][1], 10, 0, 46.64, 25.07, 30.90],
[model_tax[19][0], "", model_tax[19][1], 100, 0, 48.18, 27.18, 33.28],
]
XSUM_DATA = [
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 19.27, 3.00, 12.72],
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 19.39, 3.45, 14.02],
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 39.07, 16.44, 31.27],
[model_tax[10][0], "", model_tax[10][1], 300, 0, 32.86, 11.27, 25.64],
[model_tax[16][0], "", model_tax[16][1], 0, 0, 20.72, 3.62, 16.56],
[model_tax[16][0], "", model_tax[16][1], 10, 0, 26.10, 7.20, 19.92],
[model_tax[16][0], "", model_tax[16][1], 100, 0, 33.33, 11.36, 25.85],
[model_tax[9][0], "", model_tax[9][1], 10, 0, 32.35, 11.86, 25.33],
[model_tax[9][0], "", model_tax[9][1], 100, 0, 35.54, 13.94, 27.79],
[model_tax[19][0], "", model_tax[19][1], 10, 0, 32.65, 12.10, 25.82],
[model_tax[19][0], "", model_tax[19][1], 100, 0, 36.51, 14.55, 29.01],
[model_tax[12][0], "", model_tax[12][1], 10, 0, 32.74, 10.90, 24.86],
[model_tax[12][0], "", model_tax[12][1], 100, 0, 35.69, 12.88, 27.25],
[model_tax[18][0], "", model_tax[18][1], 1000, 0, 21.15, 3.08, 15.91],
[model_tax[4][0], "", model_tax[4][1], 100, 0, 35.20, 13.30, 28.10],
]
MN_DATA = [
[model_tax[0][0], "large", model_tax[0][1], 0, 0, 36.54, 10.52, 18.67],
[model_tax[0][0], "large", model_tax[0][1], 10, 0, 39.79, 12.56, 20.06],
[model_tax[0][0], "large", model_tax[0][1], 100, 0, 41.04, 13.88, 21.52],
[model_tax[6][0], "", model_tax[6][1], 0, 0, 39.09, 13.91, 19.19],
[model_tax[6][0], "", model_tax[6][1], 10, 0, 44.02, 15.54, 22.03],
[model_tax[6][0], "", model_tax[6][1], 100, 0, 46.01, 16.76, 22.91],
[model_tax[17][0], "", model_tax[17][1], 0, 0, 43.5, 15.7, 22.4],
[model_tax[17][0], "", model_tax[17][1], 10, 0, 43.4, 16.6, 22.2],
[model_tax[17][0], "", model_tax[17][1], 100, 0, 45.7, 16.8, 23.2],
[model_tax[19][0], "", model_tax[19][1], 10, 0, 43.60, 14.85, 20.70],
[model_tax[19][0], "", model_tax[19][1], 100, 0, 45.55, 16.01, 22.12],
[model_tax[2][0], "", model_tax[2][1], 10, 0, 38.88, 12.78, 19.88],
[model_tax[2][0], "", model_tax[2][1], 100, 0, 39.64, 13.64, 20.45],
]
COL_NAMES = [
"Rank",
"Model",
"Additional info",
"Taxonomy",
"Training samples",
"ROUGE",
"ROUGE-1",
"ROUGE-2",
"ROUGE-L",
]
data = {
"samsum": pd.DataFrame(SAMSUM_DATA),
"cnn": pd.DataFrame(CNN_DATA),
"billsum": pd.DataFrame(BILLSUM_DATA),
"xsum": pd.DataFrame(XSUM_DATA),
"multinews": pd.DataFrame(MN_DATA),
}
def make_clickable(text, url):
return "<u>[{}]({})</u>".format(text, url)
for dataset in data:
data[dataset].columns = COL_NAMES[1:]
data[dataset]["ROUGE"] = np.around(np.mean(data[dataset][["ROUGE-1", "ROUGE-2", "ROUGE-L"]], axis=1), decimals=2)
data[dataset].sort_values("ROUGE", ascending=False, inplace=True) # to default sort by ROUGE
# Add Rank column
data[dataset].insert(0, COL_NAMES[0], range(1, 1 + len(data[dataset])))
# Add link to papers/repos
data[dataset]["Model"] = data[dataset]["Model"].apply(lambda x: make_clickable(x, REPOS_PAPERS[x]))
print(data[dataset]["Model"])
# data[dataset].drop("ROUGE", axis=1, inplace=True)
NUM_DATASETS = len(set(DATASETS))
NUM_MODELS = len(set(MODELS))
block = gr.Blocks()
with block:
gr.Markdown(f"""
Low-Resource Summarization (LRS) Leaderboard. 🤗 Refer to the [Survey on LRS](the paper will be published soon) for details on metrics, taxonomy and models.
- **Total Datasets**: {NUM_DATASETS}
- **Total Models**: {NUM_MODELS}
- **Metric**: ROUGE Score
""")
with gr.Tabs():
for dataset in data:
dataset_name = DATASETS[dataset]
with gr.TabItem(dataset_name):
with gr.Row():
gr.Markdown(f"""
**{dataset_name}** leaderboard
- **ROUGE** is the average of ROUGE-1, ROUGE-2 and ROUGE-L
- **RANK** is defined following ROUGE column values
""")
with gr.Row():
data_classification = gr.components.Dataframe(
data[dataset],
datatype=["markdown", "markdown", "markdown", "number", "number", "number", "number", "number"],
type="pandas",
)
# gr.Markdown(r"""
# Made with ❤️ for NLP. If this work is useful to you, please consider citing:
# citare il survey!!!
# ```bibtex
# @article{muennighoff2022mteb,
# doi = {10.48550/ARXIV.2210.07316},
# url = {https://arxiv.org/abs/2210.07316},
# author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
# title = {MTEB: Massive Text Embedding Benchmark},
# publisher = {arXiv},
# journal={arXiv preprint arXiv:2210.07316},
# year = {2022}
# }
# ```
# """)
block.queue(max_size=10)
block.launch(share=True) |