File size: 3,827 Bytes
a318724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beeb862
 
 
a318724
beeb862
ba66486
beeb862
 
 
 
 
 
ba66486
beeb862
 
 
 
 
 
 
 
 
 
 
 
 
 
a318724
 
 
ba66486
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import pickle
import json
import os

class SafeProgress:
    """Wrapper for progress tracking that handles None gracefully"""
    def __init__(self, progress_obj=None):
        self.progress = progress_obj
    
    def __call__(self, value, desc=""):
        if self.progress is not None:
            try:
                self.progress(value, desc=desc)
            except:
                print(f"Progress {value}: {desc}")
        else:
            print(f"Progress {value}: {desc}")

def load_embeddings(embeddings_path):
    """Load ingredient embeddings from pickle file"""
    print(f"Loading ingredient embeddings from {embeddings_path}")
    with open(embeddings_path, "rb") as f:
        ingredients_embeddings = pickle.load(f)
    print(f"Loaded {len(ingredients_embeddings)} ingredient embeddings")
    return ingredients_embeddings

def parse_product_file(file_path):
    """Parse a file containing product data and extract product names"""
    try:
        with open(file_path, 'r') as f:
            try:
                products_data = json.load(f)
                if isinstance(products_data, list):
                    # Extract product names if it's a list of objects with 'name' field
                    if all(isinstance(item, dict) for item in products_data):
                        product_names = [item.get('name', '') for item in products_data if isinstance(item, dict)]
                    else:
                        # If it's just a list of strings
                        product_names = [str(item) for item in products_data if item]
                else:
                    # If it's just a list of product names
                    product_names = []
            except json.JSONDecodeError:
                # If not JSON, try reading as text file with one product per line
                f.seek(0)
                product_names = [line.strip() for line in f.readlines() if line.strip()]
    except Exception as e:
        raise Exception(f"Error reading file: {str(e)}")
    
    return product_names

def format_categories_html(product, similarities, chicory_result=None):
    """Format the similarities as HTML with bootstrap styling"""
    html = f"<div class='product-result'><h3>{product}</h3>"
    
    # Add Chicory results with explicit visibility classes
    if chicory_result:
        html += "<div class='chicory-result' style='visibility: visible; display: block;'>"
        html += "<h4>Chicory Parser Results:</h4>"
        html += "<ul>"
        for ingredient in chicory_result:
            html += f"<li>{ingredient}</li>"
        html += "</ul></div>"
    
    # Add similarities
    if similarities:
        html += "<h4>Similar Ingredients:</h4>"
        html += "<table style='width: 100%; border-collapse: collapse;'>"
        html += "<tr><th style='text-align: left; padding: 8px;'>Ingredient</th><th style='text-align: right; padding: 8px;'>Confidence</th></tr>"
        for ingredient, score in similarities:
            # Format score as percentage with color gradient based on confidence
            confidence = int(score * 100)
            color = f"hsl({min(confidence, 100) * 1.2}, 70%, 45%)"
            html += f"<tr><td style='padding: 8px;'>{ingredient}</td>"
            html += f"<td style='text-align: right; padding: 8px;'><span style='color: {color}; font-weight: bold;'>{confidence}%</span></td></tr>"
        html += "</table>"
    else:
        html += "<p>No similar ingredients found.</p>"
    
    html += "</div>"
    return html

def get_confidence_color(score):
    """Get color based on confidence score"""
    if score >= 0.8:
        return "#1a8a38"  # Strong green
    elif score >= 0.65:
        return "#4caf50"  # Medium green
    elif score >= 0.5:
        return "#8bc34a"  # Light green
    else:
        return "#9e9e9e"  # Gray