Spaces:
Sleeping
Sleeping
refactored
Browse files- .DS_Store +0 -0
- app.py +0 -369
- embeddings.py +72 -0
- ingredient_embeddings_voyageai.pkl +0 -3
- main.py +39 -0
- run_app.sh +1 -1
- similarity.py +53 -0
- spaces.py +0 -198
- ui.py +266 -0
- utils.py +75 -0
.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
app.py
DELETED
@@ -1,369 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pickle
|
3 |
-
import os
|
4 |
-
import json
|
5 |
-
import numpy as np
|
6 |
-
import voyageai
|
7 |
-
import time
|
8 |
-
import sys
|
9 |
-
from concurrent.futures import ThreadPoolExecutor
|
10 |
-
|
11 |
-
# Set Voyage AI API key directly (using the free version key from your code)
|
12 |
-
voyageai.api_key = "pa-DvIuCX_5TrCyxS6y74sUYpyWWGd4gN0Kf52y642y6k0"
|
13 |
-
|
14 |
-
# Force unbuffered output
|
15 |
-
os.environ['PYTHONUNBUFFERED'] = '1'
|
16 |
-
|
17 |
-
# ===== Embedding Generation Functions =====
|
18 |
-
def get_embeddings_batch(texts, model="voyage-3-large", batch_size=100):
|
19 |
-
"""Get embeddings for a list of texts in batches"""
|
20 |
-
all_embeddings = []
|
21 |
-
total_texts = len(texts)
|
22 |
-
|
23 |
-
# Pre-process all texts to replace newlines
|
24 |
-
texts = [text.replace("\n", " ") for text in texts]
|
25 |
-
|
26 |
-
for i in range(0, len(texts), batch_size):
|
27 |
-
batch = texts[i:i+batch_size]
|
28 |
-
|
29 |
-
try:
|
30 |
-
response = voyageai.Embedding.create(input=batch, model=model)
|
31 |
-
batch_embeddings = [item['embedding'] for item in response['data']]
|
32 |
-
all_embeddings.extend(batch_embeddings)
|
33 |
-
|
34 |
-
# Sleep briefly to avoid rate limits
|
35 |
-
if i + batch_size < len(texts):
|
36 |
-
time.sleep(0.5)
|
37 |
-
|
38 |
-
except Exception as e:
|
39 |
-
print(f"Error in batch {i//batch_size + 1}: {e}")
|
40 |
-
# Add empty embeddings for failed batch
|
41 |
-
all_embeddings.extend([None] * len(batch))
|
42 |
-
|
43 |
-
return all_embeddings
|
44 |
-
|
45 |
-
def create_product_embeddings_voyageai(products, batch_size=100):
|
46 |
-
"""Create embeddings for products using batch processing with deduplication"""
|
47 |
-
# De-duplication step
|
48 |
-
unique_products = []
|
49 |
-
product_to_index = {}
|
50 |
-
index_map = {} # Maps original index to index in unique_products
|
51 |
-
|
52 |
-
for i, product in enumerate(products):
|
53 |
-
if product in product_to_index:
|
54 |
-
# Product already seen, just store the mapping
|
55 |
-
index_map[i] = product_to_index[product]
|
56 |
-
else:
|
57 |
-
# New unique product
|
58 |
-
product_to_index[product] = len(unique_products)
|
59 |
-
index_map[i] = len(unique_products)
|
60 |
-
unique_products.append(product)
|
61 |
-
|
62 |
-
print(f"Found {len(unique_products)} unique products out of {len(products)} total")
|
63 |
-
|
64 |
-
if len(unique_products) == 0:
|
65 |
-
return {}
|
66 |
-
|
67 |
-
# Process only unique products
|
68 |
-
print(f"Processing {len(unique_products)} unique products")
|
69 |
-
|
70 |
-
# Get embeddings for unique products
|
71 |
-
unique_embeddings = get_embeddings_batch(unique_products, batch_size=batch_size)
|
72 |
-
|
73 |
-
# Map embeddings back to all products
|
74 |
-
all_products_dict = {}
|
75 |
-
for i, product in enumerate(products):
|
76 |
-
unique_idx = index_map[i]
|
77 |
-
if unique_idx < len(unique_embeddings) and unique_embeddings[unique_idx] is not None:
|
78 |
-
all_products_dict[product] = unique_embeddings[unique_idx]
|
79 |
-
|
80 |
-
print(f"Created embeddings for {len(all_products_dict)} products")
|
81 |
-
|
82 |
-
return all_products_dict
|
83 |
-
|
84 |
-
# ===== Similarity Computation Functions =====
|
85 |
-
def compute_similarities(ingredients_dict, products_dict):
|
86 |
-
"""Compute similarities between all products and ingredients using NumPy"""
|
87 |
-
# Filter valid ingredients (with non-None embeddings)
|
88 |
-
ingredient_names = []
|
89 |
-
ingredient_embeddings_list = []
|
90 |
-
for ing, emb in ingredients_dict.items():
|
91 |
-
if emb is not None:
|
92 |
-
ingredient_names.append(ing)
|
93 |
-
ingredient_embeddings_list.append(emb)
|
94 |
-
|
95 |
-
# Convert ingredient embeddings to numpy array
|
96 |
-
ingredient_embeddings = np.array(ingredient_embeddings_list, dtype=np.float32)
|
97 |
-
|
98 |
-
# Normalize ingredient embeddings for cosine similarity
|
99 |
-
ingredient_norms = np.linalg.norm(ingredient_embeddings, axis=1, keepdims=True)
|
100 |
-
normalized_ingredients = ingredient_embeddings / ingredient_norms
|
101 |
-
|
102 |
-
# Process all products
|
103 |
-
all_similarities = {}
|
104 |
-
valid_products = []
|
105 |
-
valid_embeddings = []
|
106 |
-
|
107 |
-
for product, embedding in products_dict.items():
|
108 |
-
if embedding is not None:
|
109 |
-
valid_products.append(product)
|
110 |
-
valid_embeddings.append(embedding)
|
111 |
-
|
112 |
-
if not valid_products:
|
113 |
-
return {}
|
114 |
-
|
115 |
-
# Convert product embeddings to numpy array
|
116 |
-
product_embeddings = np.array(valid_embeddings, dtype=np.float32)
|
117 |
-
|
118 |
-
# Normalize product embeddings
|
119 |
-
product_norms = np.linalg.norm(product_embeddings, axis=1, keepdims=True)
|
120 |
-
normalized_products = product_embeddings / product_norms
|
121 |
-
|
122 |
-
# Compute all similarities at once using matrix multiplication
|
123 |
-
# (dot product of normalized vectors = cosine similarity)
|
124 |
-
similarity_matrix = np.dot(normalized_products, normalized_ingredients.T)
|
125 |
-
|
126 |
-
# Process and store results
|
127 |
-
for p_idx, product in enumerate(valid_products):
|
128 |
-
product_similarities = [(ingredient_names[i_idx], float(similarity_matrix[p_idx, i_idx]))
|
129 |
-
for i_idx in range(len(ingredient_names))]
|
130 |
-
|
131 |
-
# Sort by similarity score (descending)
|
132 |
-
product_similarities.sort(key=lambda x: x[1], reverse=True)
|
133 |
-
all_similarities[product] = product_similarities
|
134 |
-
|
135 |
-
return all_similarities
|
136 |
-
|
137 |
-
# ===== Main Application Functions =====
|
138 |
-
def load_embeddings(embeddings_path):
|
139 |
-
"""Load ingredient embeddings from pickle file"""
|
140 |
-
print(f"Loading ingredient embeddings from {embeddings_path}")
|
141 |
-
with open(embeddings_path, "rb") as f:
|
142 |
-
ingredients_embeddings = pickle.load(f)
|
143 |
-
print(f"Loaded {len(ingredients_embeddings)} ingredient embeddings")
|
144 |
-
return ingredients_embeddings
|
145 |
-
|
146 |
-
# Define a safe progress tracker that handles None
|
147 |
-
class SafeProgress:
|
148 |
-
def __init__(self, progress_obj=None):
|
149 |
-
self.progress = progress_obj
|
150 |
-
|
151 |
-
def __call__(self, value, desc=""):
|
152 |
-
if self.progress is not None:
|
153 |
-
try:
|
154 |
-
self.progress(value, desc=desc)
|
155 |
-
except:
|
156 |
-
print(f"Progress {value}: {desc}")
|
157 |
-
else:
|
158 |
-
print(f"Progress {value}: {desc}")
|
159 |
-
|
160 |
-
def categorize_products_from_text(product_text, top_n=5, confidence_threshold=0.5, progress=None):
|
161 |
-
"""Categorize products from text input (one product per line)"""
|
162 |
-
# Create a safe progress tracker
|
163 |
-
progress_tracker = SafeProgress(progress)
|
164 |
-
progress_tracker(0, desc="Starting...")
|
165 |
-
|
166 |
-
# Parse input text to get product names
|
167 |
-
product_names = [line.strip() for line in product_text.split("\n") if line.strip()]
|
168 |
-
|
169 |
-
if not product_names:
|
170 |
-
return "No product names provided."
|
171 |
-
|
172 |
-
# Create product embeddings
|
173 |
-
progress_tracker(0.1, desc="Generating product embeddings...")
|
174 |
-
products_embeddings = create_product_embeddings_voyageai(product_names)
|
175 |
-
|
176 |
-
# Compute similarities
|
177 |
-
progress_tracker(0.6, desc="Computing similarities...")
|
178 |
-
all_similarities = compute_similarities(embeddings, products_embeddings)
|
179 |
-
|
180 |
-
# Format results
|
181 |
-
progress_tracker(0.9, desc="Formatting results...")
|
182 |
-
results = {}
|
183 |
-
for product, similarities in all_similarities.items():
|
184 |
-
# Filter by confidence threshold and take top N
|
185 |
-
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
186 |
-
if score >= confidence_threshold]
|
187 |
-
top_similarities = filtered_similarities[:top_n]
|
188 |
-
|
189 |
-
results[product] = top_similarities
|
190 |
-
|
191 |
-
# Format as readable text
|
192 |
-
output_text = ""
|
193 |
-
for product, categories in results.items():
|
194 |
-
output_text += f"Product: {product}\n"
|
195 |
-
if categories:
|
196 |
-
for i, (category, score) in enumerate(categories, 1):
|
197 |
-
output_text += f" {i}. {category} (confidence: {score:.3f})\n"
|
198 |
-
else:
|
199 |
-
output_text += " No matching categories found.\n"
|
200 |
-
output_text += "\n"
|
201 |
-
|
202 |
-
progress_tracker(1.0, desc="Done!")
|
203 |
-
return output_text
|
204 |
-
|
205 |
-
def categorize_products_from_file(file, top_n=5, confidence_threshold=0.5, progress=None):
|
206 |
-
"""Categorize products from a JSON file"""
|
207 |
-
# Create a safe progress tracker
|
208 |
-
progress_tracker = SafeProgress(progress)
|
209 |
-
progress_tracker(0.1, desc="Reading file...")
|
210 |
-
|
211 |
-
try:
|
212 |
-
with open(file.name, 'r') as f:
|
213 |
-
try:
|
214 |
-
products_data = json.load(f)
|
215 |
-
if isinstance(products_data, list):
|
216 |
-
# Extract product names if it's a list of objects with 'name' field
|
217 |
-
if all(isinstance(item, dict) for item in products_data):
|
218 |
-
product_names = [item.get('name', '') for item in products_data if isinstance(item, dict)]
|
219 |
-
else:
|
220 |
-
# If it's just a list of strings
|
221 |
-
product_names = [str(item) for item in products_data if item]
|
222 |
-
else:
|
223 |
-
# If it's just a list of product names
|
224 |
-
product_names = []
|
225 |
-
except json.JSONDecodeError:
|
226 |
-
# If not JSON, try reading as text file with one product per line
|
227 |
-
f.seek(0)
|
228 |
-
product_names = [line.strip() for line in f.readlines() if line.strip()]
|
229 |
-
except Exception as e:
|
230 |
-
return f"Error reading file: {str(e)}"
|
231 |
-
|
232 |
-
if not product_names:
|
233 |
-
return "No product names found in the file."
|
234 |
-
|
235 |
-
# Create product embeddings
|
236 |
-
progress_tracker(0.2, desc="Generating product embeddings...")
|
237 |
-
products_embeddings = create_product_embeddings_voyageai(product_names)
|
238 |
-
|
239 |
-
# Compute similarities
|
240 |
-
progress_tracker(0.7, desc="Computing similarities...")
|
241 |
-
all_similarities = compute_similarities(embeddings, products_embeddings)
|
242 |
-
|
243 |
-
# Format results
|
244 |
-
progress_tracker(0.9, desc="Formatting results...")
|
245 |
-
output_text = f"Found {len(product_names)} products in file.\n\n"
|
246 |
-
|
247 |
-
for product, similarities in all_similarities.items():
|
248 |
-
# Filter by confidence threshold and take top N
|
249 |
-
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
250 |
-
if score >= confidence_threshold]
|
251 |
-
top_similarities = filtered_similarities[:top_n]
|
252 |
-
|
253 |
-
output_text += f"Product: {product}\n"
|
254 |
-
if top_similarities:
|
255 |
-
for i, (category, score) in enumerate(top_similarities, 1):
|
256 |
-
output_text += f" {i}. {category} (confidence: {score:.3f})\n"
|
257 |
-
else:
|
258 |
-
output_text += " No matching categories found.\n"
|
259 |
-
output_text += "\n"
|
260 |
-
|
261 |
-
progress_tracker(1.0, desc="Done!")
|
262 |
-
return output_text
|
263 |
-
|
264 |
-
# Load embeddings at the module level for easier access
|
265 |
-
try:
|
266 |
-
embeddings_path = "ingredient_embeddings_voyageai.pkl"
|
267 |
-
embeddings = load_embeddings(embeddings_path)
|
268 |
-
except Exception as e:
|
269 |
-
print(f"Warning: Could not load embeddings at startup: {e}")
|
270 |
-
print("Will attempt to load them when the app runs")
|
271 |
-
embeddings = {}
|
272 |
-
|
273 |
-
# ===== Gradio Interface Setup =====
|
274 |
-
def create_interface(embeddings_path="ingredient_embeddings_voyageai.pkl"):
|
275 |
-
# Ensure embeddings are loaded
|
276 |
-
global embeddings
|
277 |
-
if not embeddings:
|
278 |
-
try:
|
279 |
-
embeddings = load_embeddings(embeddings_path)
|
280 |
-
except Exception as e:
|
281 |
-
print(f"Error loading embeddings: {e}")
|
282 |
-
gr.Error(f"Failed to load embeddings file: {e}")
|
283 |
-
|
284 |
-
# Text input interface
|
285 |
-
with gr.Blocks() as demo:
|
286 |
-
gr.Markdown("# Product Categorization Tool")
|
287 |
-
gr.Markdown("This tool uses AI to categorize products based on their similarity to known ingredients.")
|
288 |
-
|
289 |
-
with gr.Tabs():
|
290 |
-
with gr.TabItem("Text Input"):
|
291 |
-
with gr.Row():
|
292 |
-
with gr.Column():
|
293 |
-
text_input = gr.Textbox(
|
294 |
-
lines=10,
|
295 |
-
placeholder="Enter product names, one per line",
|
296 |
-
label="Product Names"
|
297 |
-
)
|
298 |
-
top_n = gr.Slider(
|
299 |
-
minimum=1,
|
300 |
-
maximum=10,
|
301 |
-
value=5,
|
302 |
-
step=1,
|
303 |
-
label="Number of Top Categories"
|
304 |
-
)
|
305 |
-
confidence = gr.Slider(
|
306 |
-
minimum=0.1,
|
307 |
-
maximum=0.9,
|
308 |
-
value=0.5,
|
309 |
-
step=0.05,
|
310 |
-
label="Confidence Threshold"
|
311 |
-
)
|
312 |
-
submit_button = gr.Button("Categorize Products")
|
313 |
-
|
314 |
-
with gr.Column():
|
315 |
-
text_output = gr.Textbox(label="Categorization Results", lines=20)
|
316 |
-
|
317 |
-
submit_button.click(
|
318 |
-
fn=categorize_products_from_text,
|
319 |
-
inputs=[text_input, top_n, confidence],
|
320 |
-
outputs=text_output
|
321 |
-
)
|
322 |
-
|
323 |
-
with gr.TabItem("File Upload"):
|
324 |
-
with gr.Row():
|
325 |
-
with gr.Column():
|
326 |
-
file_input = gr.File(label="Upload JSON file with products")
|
327 |
-
file_top_n = gr.Slider(
|
328 |
-
minimum=1,
|
329 |
-
maximum=10,
|
330 |
-
value=5,
|
331 |
-
step=1,
|
332 |
-
label="Number of Top Categories"
|
333 |
-
)
|
334 |
-
file_confidence = gr.Slider(
|
335 |
-
minimum=0.1,
|
336 |
-
maximum=0.9,
|
337 |
-
value=0.5,
|
338 |
-
step=0.05,
|
339 |
-
label="Confidence Threshold"
|
340 |
-
)
|
341 |
-
file_button = gr.Button("Process File")
|
342 |
-
|
343 |
-
with gr.Column():
|
344 |
-
file_output = gr.Textbox(label="Categorization Results", lines=20)
|
345 |
-
|
346 |
-
file_button.click(
|
347 |
-
fn=categorize_products_from_file,
|
348 |
-
inputs=[file_input, file_top_n, file_confidence],
|
349 |
-
outputs=file_output
|
350 |
-
)
|
351 |
-
|
352 |
-
gr.Markdown("### Example Input")
|
353 |
-
gr.Markdown("Try entering product names like:\n- Tomato Sauce\n- Apple Pie\n- Greek Yogurt\n- Chocolate Chip Cookies")
|
354 |
-
|
355 |
-
return demo
|
356 |
-
|
357 |
-
if __name__ == "__main__":
|
358 |
-
import argparse
|
359 |
-
|
360 |
-
parser = argparse.ArgumentParser(description='Run the Product Categorization web app')
|
361 |
-
parser.add_argument('--embeddings', default='ingredient_embeddings_voyageai.pkl',
|
362 |
-
help='Path to the ingredient embeddings pickle file')
|
363 |
-
parser.add_argument('--share', action='store_true', help='Create a public link for sharing')
|
364 |
-
|
365 |
-
args = parser.parse_args()
|
366 |
-
|
367 |
-
# Create and launch the interface
|
368 |
-
demo = create_interface(args.embeddings)
|
369 |
-
demo.launch(share=args.share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embeddings.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import voyageai
|
2 |
+
import time
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Set Voyage AI API key directly
|
6 |
+
voyageai.api_key = "pa-DvIuCX_5TrCyxS6y74sUYpyWWGd4gN0Kf52y642y6k0"
|
7 |
+
|
8 |
+
def get_embeddings_batch(texts, model="voyage-3-large", batch_size=100):
|
9 |
+
"""Get embeddings for a list of texts in batches"""
|
10 |
+
all_embeddings = []
|
11 |
+
total_texts = len(texts)
|
12 |
+
|
13 |
+
# Pre-process all texts to replace newlines
|
14 |
+
texts = [text.replace("\n", " ") for text in texts]
|
15 |
+
|
16 |
+
for i in range(0, len(texts), batch_size):
|
17 |
+
batch = texts[i:i+batch_size]
|
18 |
+
|
19 |
+
try:
|
20 |
+
response = voyageai.Embedding.create(input=batch, model=model)
|
21 |
+
batch_embeddings = [item['embedding'] for item in response['data']]
|
22 |
+
all_embeddings.extend(batch_embeddings)
|
23 |
+
|
24 |
+
# Sleep briefly to avoid rate limits
|
25 |
+
if i + batch_size < len(texts):
|
26 |
+
time.sleep(0.5)
|
27 |
+
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error in batch {i//batch_size + 1}: {e}")
|
30 |
+
# Add empty embeddings for failed batch
|
31 |
+
all_embeddings.extend([None] * len(batch))
|
32 |
+
|
33 |
+
return all_embeddings
|
34 |
+
|
35 |
+
def create_product_embeddings(products, batch_size=100):
|
36 |
+
"""Create embeddings for products using batch processing with deduplication"""
|
37 |
+
# De-duplication step
|
38 |
+
unique_products = []
|
39 |
+
product_to_index = {}
|
40 |
+
index_map = {} # Maps original index to index in unique_products
|
41 |
+
|
42 |
+
for i, product in enumerate(products):
|
43 |
+
if product in product_to_index:
|
44 |
+
# Product already seen, just store the mapping
|
45 |
+
index_map[i] = product_to_index[product]
|
46 |
+
else:
|
47 |
+
# New unique product
|
48 |
+
product_to_index[product] = len(unique_products)
|
49 |
+
index_map[i] = len(unique_products)
|
50 |
+
unique_products.append(product)
|
51 |
+
|
52 |
+
print(f"Found {len(unique_products)} unique products out of {len(products)} total")
|
53 |
+
|
54 |
+
if len(unique_products) == 0:
|
55 |
+
return {}
|
56 |
+
|
57 |
+
# Process only unique products
|
58 |
+
print(f"Processing {len(unique_products)} unique products")
|
59 |
+
|
60 |
+
# Get embeddings for unique products
|
61 |
+
unique_embeddings = get_embeddings_batch(unique_products, batch_size=batch_size)
|
62 |
+
|
63 |
+
# Map embeddings back to all products
|
64 |
+
all_products_dict = {}
|
65 |
+
for i, product in enumerate(products):
|
66 |
+
unique_idx = index_map[i]
|
67 |
+
if unique_idx < len(unique_embeddings) and unique_embeddings[unique_idx] is not None:
|
68 |
+
all_products_dict[product] = unique_embeddings[unique_idx]
|
69 |
+
|
70 |
+
print(f"Created embeddings for {len(all_products_dict)} products")
|
71 |
+
|
72 |
+
return all_products_dict
|
ingredient_embeddings_voyageai.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:de6791a4909432600b90a5523e8a105f047887d4ac59d63460d8a2f9d788d0c9
|
3 |
-
size 27301581
|
|
|
|
|
|
|
|
main.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import gradio as gr
|
5 |
+
from utils import load_embeddings
|
6 |
+
from ui import create_demo, embeddings
|
7 |
+
|
8 |
+
def main():
|
9 |
+
"""Main entry point for the application"""
|
10 |
+
parser = argparse.ArgumentParser(description='Run the Product Categorization web app')
|
11 |
+
parser.add_argument('--embeddings', default='ingredient_embeddings_voyageai.pkl',
|
12 |
+
help='Path to the ingredient embeddings pickle file')
|
13 |
+
parser.add_argument('--share', action='store_true', help='Create a public link for sharing')
|
14 |
+
|
15 |
+
args = parser.parse_args()
|
16 |
+
|
17 |
+
# Check if embeddings file exists
|
18 |
+
if not os.path.exists(args.embeddings):
|
19 |
+
print(f"Error: Embeddings file {args.embeddings} not found!")
|
20 |
+
print(f"Please ensure the file exists at {os.path.abspath(args.embeddings)}")
|
21 |
+
sys.exit(1)
|
22 |
+
|
23 |
+
# Load embeddings
|
24 |
+
try:
|
25 |
+
global embeddings
|
26 |
+
embeddings_data = load_embeddings(args.embeddings)
|
27 |
+
# Update the embeddings in the ui module
|
28 |
+
import ui
|
29 |
+
ui.embeddings = embeddings_data
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error loading embeddings: {e}")
|
32 |
+
sys.exit(1)
|
33 |
+
|
34 |
+
# Create and launch the interface
|
35 |
+
demo = create_demo()
|
36 |
+
demo.launch(share=args.share)
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
main()
|
run_app.sh
CHANGED
@@ -6,7 +6,7 @@ pip install -r requirements.txt
|
|
6 |
# Check if embeddings file exists
|
7 |
if [ -f "ingredient_embeddings_voyageai.pkl" ]; then
|
8 |
# Run with local embeddings file
|
9 |
-
python
|
10 |
else
|
11 |
echo "ERROR: ingredient_embeddings_voyageai.pkl file not found!"
|
12 |
echo "Please place the embeddings file in the same directory as this script."
|
|
|
6 |
# Check if embeddings file exists
|
7 |
if [ -f "ingredient_embeddings_voyageai.pkl" ]; then
|
8 |
# Run with local embeddings file
|
9 |
+
python main.py --share
|
10 |
else
|
11 |
echo "ERROR: ingredient_embeddings_voyageai.pkl file not found!"
|
12 |
echo "Please place the embeddings file in the same directory as this script."
|
similarity.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def compute_similarities(ingredients_dict, products_dict):
|
4 |
+
"""Compute similarities between all products and ingredients using NumPy"""
|
5 |
+
# Filter valid ingredients (with non-None embeddings)
|
6 |
+
ingredient_names = []
|
7 |
+
ingredient_embeddings_list = []
|
8 |
+
for ing, emb in ingredients_dict.items():
|
9 |
+
if emb is not None:
|
10 |
+
ingredient_names.append(ing)
|
11 |
+
ingredient_embeddings_list.append(emb)
|
12 |
+
|
13 |
+
# Convert ingredient embeddings to numpy array
|
14 |
+
ingredient_embeddings = np.array(ingredient_embeddings_list, dtype=np.float32)
|
15 |
+
|
16 |
+
# Normalize ingredient embeddings for cosine similarity
|
17 |
+
ingredient_norms = np.linalg.norm(ingredient_embeddings, axis=1, keepdims=True)
|
18 |
+
normalized_ingredients = ingredient_embeddings / ingredient_norms
|
19 |
+
|
20 |
+
# Process all products
|
21 |
+
all_similarities = {}
|
22 |
+
valid_products = []
|
23 |
+
valid_embeddings = []
|
24 |
+
|
25 |
+
for product, embedding in products_dict.items():
|
26 |
+
if embedding is not None:
|
27 |
+
valid_products.append(product)
|
28 |
+
valid_embeddings.append(embedding)
|
29 |
+
|
30 |
+
if not valid_products:
|
31 |
+
return {}
|
32 |
+
|
33 |
+
# Convert product embeddings to numpy array
|
34 |
+
product_embeddings = np.array(valid_embeddings, dtype=np.float32)
|
35 |
+
|
36 |
+
# Normalize product embeddings
|
37 |
+
product_norms = np.linalg.norm(product_embeddings, axis=1, keepdims=True)
|
38 |
+
normalized_products = product_embeddings / product_norms
|
39 |
+
|
40 |
+
# Compute all similarities at once using matrix multiplication
|
41 |
+
# (dot product of normalized vectors = cosine similarity)
|
42 |
+
similarity_matrix = np.dot(normalized_products, normalized_ingredients.T)
|
43 |
+
|
44 |
+
# Process and store results
|
45 |
+
for p_idx, product in enumerate(valid_products):
|
46 |
+
product_similarities = [(ingredient_names[i_idx], float(similarity_matrix[p_idx, i_idx]))
|
47 |
+
for i_idx in range(len(ingredient_names))]
|
48 |
+
|
49 |
+
# Sort by similarity score (descending)
|
50 |
+
product_similarities.sort(key=lambda x: x[1], reverse=True)
|
51 |
+
all_similarities[product] = product_similarities
|
52 |
+
|
53 |
+
return all_similarities
|
spaces.py
DELETED
@@ -1,198 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pickle
|
3 |
-
import os
|
4 |
-
import json
|
5 |
-
import numpy as np
|
6 |
-
import voyageai
|
7 |
-
import time
|
8 |
-
import sys
|
9 |
-
|
10 |
-
# Set Voyage AI API key directly
|
11 |
-
voyageai.api_key = "pa-DvIuCX_5TrCyxS6y74sUYpyWWGd4gN0Kf52y642y6k0"
|
12 |
-
|
13 |
-
# Import all necessary functions from the main app
|
14 |
-
from app import create_product_embeddings_voyageai, get_embeddings_batch, compute_similarities
|
15 |
-
|
16 |
-
# Path to the embeddings file for Hugging Face Spaces
|
17 |
-
EMBEDDINGS_PATH = "ingredient_embeddings_voyageai.pkl"
|
18 |
-
|
19 |
-
# Load the embeddings
|
20 |
-
print(f"Loading ingredient embeddings from {EMBEDDINGS_PATH}")
|
21 |
-
try:
|
22 |
-
with open(EMBEDDINGS_PATH, "rb") as f:
|
23 |
-
embeddings = pickle.load(f)
|
24 |
-
print(f"Successfully loaded {len(embeddings)} ingredient embeddings")
|
25 |
-
except Exception as e:
|
26 |
-
print(f"ERROR: Failed to load embeddings: {e}")
|
27 |
-
# Create an empty dict as fallback
|
28 |
-
embeddings = {}
|
29 |
-
|
30 |
-
# Define the categorization function for text input
|
31 |
-
def categorize_products_from_text(product_text, progress=gr.Progress(), top_n=5, confidence_threshold=0.5):
|
32 |
-
"""Categorize products from text input (one product per line)"""
|
33 |
-
# Parse input text to get product names
|
34 |
-
product_names = [line.strip() for line in product_text.split("\n") if line.strip()]
|
35 |
-
|
36 |
-
if not product_names:
|
37 |
-
return "No product names provided."
|
38 |
-
|
39 |
-
progress(0.1, desc="Generating product embeddings...")
|
40 |
-
|
41 |
-
# Create product embeddings
|
42 |
-
products_embeddings = create_product_embeddings_voyageai(product_names)
|
43 |
-
|
44 |
-
# Compute similarities
|
45 |
-
progress(0.6, desc="Computing similarities...")
|
46 |
-
all_similarities = compute_similarities(embeddings, products_embeddings)
|
47 |
-
|
48 |
-
# Format results
|
49 |
-
progress(0.9, desc="Formatting results...")
|
50 |
-
output_text = ""
|
51 |
-
for product, similarities in all_similarities.items():
|
52 |
-
# Filter by confidence threshold and take top N
|
53 |
-
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
54 |
-
if score >= confidence_threshold]
|
55 |
-
top_similarities = filtered_similarities[:top_n]
|
56 |
-
|
57 |
-
output_text += f"Product: {product}\n"
|
58 |
-
if top_similarities:
|
59 |
-
for i, (category, score) in enumerate(top_similarities, 1):
|
60 |
-
output_text += f" {i}. {category} (confidence: {score:.3f})\n"
|
61 |
-
else:
|
62 |
-
output_text += " No matching categories found.\n"
|
63 |
-
output_text += "\n"
|
64 |
-
|
65 |
-
progress(1.0, desc="Done!")
|
66 |
-
return output_text
|
67 |
-
|
68 |
-
# Define the categorization function for file input
|
69 |
-
def categorize_products_from_file(file, progress=gr.Progress(), top_n=5, confidence_threshold=0.5):
|
70 |
-
"""Categorize products from a JSON file"""
|
71 |
-
progress(0.1, desc="Reading file...")
|
72 |
-
|
73 |
-
try:
|
74 |
-
with open(file.name, 'r') as f:
|
75 |
-
try:
|
76 |
-
products_data = json.load(f)
|
77 |
-
if isinstance(products_data, list):
|
78 |
-
# Extract product names if it's a list of objects with 'name' field
|
79 |
-
if all(isinstance(item, dict) for item in products_data):
|
80 |
-
product_names = [item.get('name', '') for item in products_data if isinstance(item, dict)]
|
81 |
-
else:
|
82 |
-
# If it's just a list of strings
|
83 |
-
product_names = [str(item) for item in products_data if item]
|
84 |
-
else:
|
85 |
-
# If it's just a list of product names
|
86 |
-
product_names = []
|
87 |
-
except json.JSONDecodeError:
|
88 |
-
# If not JSON, try reading as text file with one product per line
|
89 |
-
f.seek(0)
|
90 |
-
product_names = [line.strip() for line in f.readlines() if line.strip()]
|
91 |
-
except Exception as e:
|
92 |
-
return f"Error reading file: {str(e)}"
|
93 |
-
|
94 |
-
if not product_names:
|
95 |
-
return "No product names found in the file."
|
96 |
-
|
97 |
-
# Create product embeddings
|
98 |
-
progress(0.2, desc="Generating product embeddings...")
|
99 |
-
products_embeddings = create_product_embeddings_voyageai(product_names)
|
100 |
-
|
101 |
-
# Compute similarities
|
102 |
-
progress(0.7, desc="Computing similarities...")
|
103 |
-
all_similarities = compute_similarities(embeddings, products_embeddings)
|
104 |
-
|
105 |
-
# Format results
|
106 |
-
progress(0.9, desc="Formatting results...")
|
107 |
-
output_text = f"Found {len(product_names)} products in file.\n\n"
|
108 |
-
|
109 |
-
for product, similarities in all_similarities.items():
|
110 |
-
# Filter by confidence threshold and take top N
|
111 |
-
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
112 |
-
if score >= confidence_threshold]
|
113 |
-
top_similarities = filtered_similarities[:top_n]
|
114 |
-
|
115 |
-
output_text += f"Product: {product}\n"
|
116 |
-
if top_similarities:
|
117 |
-
for i, (category, score) in enumerate(top_similarities, 1):
|
118 |
-
output_text += f" {i}. {category} (confidence: {score:.3f})\n"
|
119 |
-
else:
|
120 |
-
output_text += " No matching categories found.\n"
|
121 |
-
output_text += "\n"
|
122 |
-
|
123 |
-
progress(1.0, desc="Done!")
|
124 |
-
return output_text
|
125 |
-
|
126 |
-
# Create the Gradio interface
|
127 |
-
with gr.Blocks() as demo:
|
128 |
-
gr.Markdown("# Product Categorization Tool")
|
129 |
-
gr.Markdown("This tool uses AI to categorize products based on their similarity to known ingredients.")
|
130 |
-
|
131 |
-
with gr.Tabs():
|
132 |
-
with gr.TabItem("Text Input"):
|
133 |
-
with gr.Row():
|
134 |
-
with gr.Column():
|
135 |
-
text_input = gr.Textbox(
|
136 |
-
lines=10,
|
137 |
-
placeholder="Enter product names, one per line",
|
138 |
-
label="Product Names"
|
139 |
-
)
|
140 |
-
top_n = gr.Slider(
|
141 |
-
minimum=1,
|
142 |
-
maximum=10,
|
143 |
-
value=5,
|
144 |
-
step=1,
|
145 |
-
label="Number of Top Categories"
|
146 |
-
)
|
147 |
-
confidence = gr.Slider(
|
148 |
-
minimum=0.1,
|
149 |
-
maximum=0.9,
|
150 |
-
value=0.5,
|
151 |
-
step=0.05,
|
152 |
-
label="Confidence Threshold"
|
153 |
-
)
|
154 |
-
submit_button = gr.Button("Categorize Products")
|
155 |
-
|
156 |
-
with gr.Column():
|
157 |
-
text_output = gr.Textbox(label="Categorization Results", lines=20)
|
158 |
-
|
159 |
-
submit_button.click(
|
160 |
-
fn=categorize_products_from_text,
|
161 |
-
inputs=[text_input, top_n, confidence],
|
162 |
-
outputs=text_output
|
163 |
-
)
|
164 |
-
|
165 |
-
with gr.TabItem("File Upload"):
|
166 |
-
with gr.Row():
|
167 |
-
with gr.Column():
|
168 |
-
file_input = gr.File(label="Upload JSON file with products")
|
169 |
-
file_top_n = gr.Slider(
|
170 |
-
minimum=1,
|
171 |
-
maximum=10,
|
172 |
-
value=5,
|
173 |
-
step=1,
|
174 |
-
label="Number of Top Categories"
|
175 |
-
)
|
176 |
-
file_confidence = gr.Slider(
|
177 |
-
minimum=0.1,
|
178 |
-
maximum=0.9,
|
179 |
-
value=0.5,
|
180 |
-
step=0.05,
|
181 |
-
label="Confidence Threshold"
|
182 |
-
)
|
183 |
-
file_button = gr.Button("Process File")
|
184 |
-
|
185 |
-
with gr.Column():
|
186 |
-
file_output = gr.Textbox(label="Categorization Results", lines=20)
|
187 |
-
|
188 |
-
file_button.click(
|
189 |
-
fn=categorize_products_from_file,
|
190 |
-
inputs=[file_input, file_top_n, file_confidence],
|
191 |
-
outputs=file_output
|
192 |
-
)
|
193 |
-
|
194 |
-
gr.Markdown("### Example Input")
|
195 |
-
gr.Markdown("Try entering product names like:\n- Tomato Sauce\n- Apple Pie\n- Greek Yogurt\n- Chocolate Chip Cookies")
|
196 |
-
|
197 |
-
# Launch the demo (for Hugging Face Spaces)
|
198 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ui.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from utils import SafeProgress, format_categories_html
|
3 |
+
from embeddings import create_product_embeddings
|
4 |
+
from similarity import compute_similarities
|
5 |
+
|
6 |
+
# Global variable for embeddings
|
7 |
+
embeddings = {}
|
8 |
+
|
9 |
+
def categorize_products_from_text(product_text, top_n=5, confidence_threshold=0.5, progress=None):
|
10 |
+
"""Categorize products from text input (one product per line)"""
|
11 |
+
# Create a safe progress tracker
|
12 |
+
progress_tracker = SafeProgress(progress)
|
13 |
+
progress_tracker(0, desc="Starting...")
|
14 |
+
|
15 |
+
# Parse input text to get product names
|
16 |
+
product_names = [line.strip() for line in product_text.split("\n") if line.strip()]
|
17 |
+
|
18 |
+
if not product_names:
|
19 |
+
return "No product names provided."
|
20 |
+
|
21 |
+
# Create product embeddings
|
22 |
+
progress_tracker(0.1, desc="Generating product embeddings...")
|
23 |
+
products_embeddings = create_product_embeddings(product_names)
|
24 |
+
|
25 |
+
# Compute similarities
|
26 |
+
progress_tracker(0.6, desc="Computing similarities...")
|
27 |
+
all_similarities = compute_similarities(embeddings, products_embeddings)
|
28 |
+
|
29 |
+
# Format results
|
30 |
+
progress_tracker(0.9, desc="Formatting results...")
|
31 |
+
output_html = "<div style='font-family: Arial, sans-serif;'>"
|
32 |
+
|
33 |
+
for product, similarities in all_similarities.items():
|
34 |
+
# Filter by confidence threshold and take top N
|
35 |
+
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
36 |
+
if score >= confidence_threshold]
|
37 |
+
top_similarities = filtered_similarities[:top_n]
|
38 |
+
|
39 |
+
output_html += format_categories_html(product, top_similarities)
|
40 |
+
output_html += "<hr style='margin: 15px 0; border: 0; border-top: 1px solid #eee;'>"
|
41 |
+
|
42 |
+
output_html += "</div>"
|
43 |
+
|
44 |
+
if not all_similarities:
|
45 |
+
output_html = "<div style='color: #d32f2f; font-weight: bold; padding: 20px;'>No results found. Please check your input or try different products.</div>"
|
46 |
+
|
47 |
+
progress_tracker(1.0, desc="Done!")
|
48 |
+
return output_html
|
49 |
+
|
50 |
+
def categorize_products_from_file(file, top_n=5, confidence_threshold=0.5, progress=None):
|
51 |
+
"""Categorize products from a JSON or text file"""
|
52 |
+
from utils import parse_product_file
|
53 |
+
|
54 |
+
# Create a safe progress tracker
|
55 |
+
progress_tracker = SafeProgress(progress)
|
56 |
+
progress_tracker(0.1, desc="Reading file...")
|
57 |
+
|
58 |
+
try:
|
59 |
+
product_names = parse_product_file(file.name)
|
60 |
+
except Exception as e:
|
61 |
+
return f"<div style='color: #d32f2f; font-weight: bold;'>Error: {str(e)}</div>"
|
62 |
+
|
63 |
+
if not product_names:
|
64 |
+
return "<div style='color: #d32f2f;'>No product names found in the file.</div>"
|
65 |
+
|
66 |
+
# Create product embeddings
|
67 |
+
progress_tracker(0.2, desc="Generating product embeddings...")
|
68 |
+
products_embeddings = create_product_embeddings(product_names)
|
69 |
+
|
70 |
+
# Compute similarities
|
71 |
+
progress_tracker(0.7, desc="Computing similarities...")
|
72 |
+
all_similarities = compute_similarities(embeddings, products_embeddings)
|
73 |
+
|
74 |
+
# Format results
|
75 |
+
progress_tracker(0.9, desc="Formatting results...")
|
76 |
+
output_html = f"<div style='font-family: Arial, sans-serif;'>"
|
77 |
+
output_html += f"<div style='margin-bottom: 20px; padding: 10px; background-color: #e8f5e9; border-radius: 5px;'>"
|
78 |
+
output_html += f"Found <b>{len(product_names)}</b> products in file. Showing results with confidence ≥ {confidence_threshold}."
|
79 |
+
output_html += "</div>"
|
80 |
+
|
81 |
+
for product, similarities in all_similarities.items():
|
82 |
+
# Filter by confidence threshold and take top N
|
83 |
+
filtered_similarities = [(ingredient, score) for ingredient, score in similarities
|
84 |
+
if score >= confidence_threshold]
|
85 |
+
top_similarities = filtered_similarities[:top_n]
|
86 |
+
|
87 |
+
output_html += format_categories_html(product, top_similarities)
|
88 |
+
output_html += "<hr style='margin: 15px 0; border: 0; border-top: 1px solid #eee;'>"
|
89 |
+
|
90 |
+
output_html += "</div>"
|
91 |
+
|
92 |
+
progress_tracker(1.0, desc="Done!")
|
93 |
+
return output_html
|
94 |
+
|
95 |
+
def create_demo():
|
96 |
+
"""Create the Gradio interface"""
|
97 |
+
# Basic CSS theme
|
98 |
+
css = """
|
99 |
+
.container {
|
100 |
+
max-width: 1200px;
|
101 |
+
margin: auto;
|
102 |
+
padding: 0;
|
103 |
+
}
|
104 |
+
footer {display: none !important;}
|
105 |
+
.header {
|
106 |
+
background-color: #0d47a1;
|
107 |
+
padding: 15px 20px;
|
108 |
+
border-radius: 10px;
|
109 |
+
color: white;
|
110 |
+
margin-bottom: 20px;
|
111 |
+
display: flex;
|
112 |
+
align-items: center;
|
113 |
+
}
|
114 |
+
.header svg {
|
115 |
+
margin-right: 10px;
|
116 |
+
height: 30px;
|
117 |
+
width: 30px;
|
118 |
+
}
|
119 |
+
.header h1 {
|
120 |
+
margin: 0;
|
121 |
+
font-size: 24px;
|
122 |
+
}
|
123 |
+
.description {
|
124 |
+
margin-bottom: 20px;
|
125 |
+
padding: 15px;
|
126 |
+
background-color: #f5f5f5;
|
127 |
+
border-radius: 5px;
|
128 |
+
}
|
129 |
+
"""
|
130 |
+
|
131 |
+
# Custom theme
|
132 |
+
theme = gr.themes.Soft(
|
133 |
+
primary_hue="blue",
|
134 |
+
secondary_hue="indigo",
|
135 |
+
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui"]
|
136 |
+
).set(
|
137 |
+
button_primary_background_fill="*primary_500",
|
138 |
+
button_primary_background_fill_hover="*primary_600",
|
139 |
+
button_secondary_background_fill="*neutral_200",
|
140 |
+
block_title_text_size="lg",
|
141 |
+
block_label_text_size="md"
|
142 |
+
)
|
143 |
+
|
144 |
+
with gr.Blocks(css=css, theme=theme) as demo:
|
145 |
+
# Header with icon
|
146 |
+
gr.HTML("""
|
147 |
+
<div class="header">
|
148 |
+
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="white">
|
149 |
+
<path d="M12 2L2 7l10 5 10-5-10-5zM2 17l10 5 10-5M2 12l10 5 10-5"></path>
|
150 |
+
</svg>
|
151 |
+
<h1>Product Categorization Tool</h1>
|
152 |
+
</div>
|
153 |
+
<div class="description">
|
154 |
+
This tool analyzes products and finds the most similar ingredients using AI embeddings.
|
155 |
+
Just enter product names or upload a file to get started.
|
156 |
+
</div>
|
157 |
+
""")
|
158 |
+
|
159 |
+
with gr.Tabs():
|
160 |
+
with gr.TabItem("Text Input"):
|
161 |
+
with gr.Row():
|
162 |
+
with gr.Column(scale=2):
|
163 |
+
example_products = [
|
164 |
+
"Tomato Sauce\nApple Pie\nGreek Yogurt\nChocolate Chip Cookies",
|
165 |
+
"Banana Bread\nOrange Juice\nGrilled Chicken\nCaesar Salad",
|
166 |
+
"Vanilla Ice Cream\nPizza Dough\nStrawberry Jam\nGrilled Salmon"
|
167 |
+
]
|
168 |
+
|
169 |
+
text_input = gr.Textbox(
|
170 |
+
lines=10,
|
171 |
+
placeholder="Enter product names, one per line",
|
172 |
+
label="Product Names"
|
173 |
+
)
|
174 |
+
|
175 |
+
gr.Examples(
|
176 |
+
examples=example_products,
|
177 |
+
inputs=text_input,
|
178 |
+
label="Example Product Sets"
|
179 |
+
)
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column(scale=1):
|
183 |
+
top_n = gr.Slider(
|
184 |
+
minimum=1,
|
185 |
+
maximum=10,
|
186 |
+
value=5,
|
187 |
+
step=1,
|
188 |
+
label="Number of Top Categories"
|
189 |
+
)
|
190 |
+
with gr.Column(scale=1):
|
191 |
+
confidence = gr.Slider(
|
192 |
+
minimum=0.1,
|
193 |
+
maximum=0.9,
|
194 |
+
value=0.5,
|
195 |
+
step=0.05,
|
196 |
+
label="Confidence Threshold"
|
197 |
+
)
|
198 |
+
|
199 |
+
submit_button = gr.Button("Categorize Products", variant="primary")
|
200 |
+
|
201 |
+
with gr.Column(scale=3):
|
202 |
+
text_output = gr.HTML(label="Categorization Results",
|
203 |
+
value="<div style='height: 450px; display: flex; justify-content: center; align-items: center; color: #666;'>Results will appear here</div>")
|
204 |
+
|
205 |
+
submit_button.click(
|
206 |
+
fn=categorize_products_from_text,
|
207 |
+
inputs=[text_input, top_n, confidence],
|
208 |
+
outputs=text_output
|
209 |
+
)
|
210 |
+
|
211 |
+
with gr.TabItem("File Upload"):
|
212 |
+
with gr.Row():
|
213 |
+
with gr.Column(scale=2):
|
214 |
+
file_input = gr.File(
|
215 |
+
label="Upload JSON or text file with products",
|
216 |
+
file_types=[".json", ".txt"]
|
217 |
+
)
|
218 |
+
|
219 |
+
with gr.Accordion("Help", open=False):
|
220 |
+
gr.Markdown("""
|
221 |
+
- JSON files should contain either:
|
222 |
+
- A list of objects with a 'name' field for each product
|
223 |
+
- A simple array of product name strings
|
224 |
+
- Text files should have one product name per line
|
225 |
+
""")
|
226 |
+
|
227 |
+
with gr.Row():
|
228 |
+
with gr.Column(scale=1):
|
229 |
+
file_top_n = gr.Slider(
|
230 |
+
minimum=1,
|
231 |
+
maximum=10,
|
232 |
+
value=5,
|
233 |
+
step=1,
|
234 |
+
label="Number of Top Categories"
|
235 |
+
)
|
236 |
+
with gr.Column(scale=1):
|
237 |
+
file_confidence = gr.Slider(
|
238 |
+
minimum=0.1,
|
239 |
+
maximum=0.9,
|
240 |
+
value=0.5,
|
241 |
+
step=0.05,
|
242 |
+
label="Confidence Threshold"
|
243 |
+
)
|
244 |
+
|
245 |
+
file_button = gr.Button("Process File", variant="primary")
|
246 |
+
|
247 |
+
with gr.Column(scale=3):
|
248 |
+
file_output = gr.HTML(
|
249 |
+
label="Categorization Results",
|
250 |
+
value="<div style='height: 450px; display: flex; justify-content: center; align-items: center; color: #666;'>Upload a file to see results</div>"
|
251 |
+
)
|
252 |
+
|
253 |
+
file_button.click(
|
254 |
+
fn=categorize_products_from_file,
|
255 |
+
inputs=[file_input, file_top_n, file_confidence],
|
256 |
+
outputs=file_output
|
257 |
+
)
|
258 |
+
|
259 |
+
# Footer
|
260 |
+
gr.HTML("""
|
261 |
+
<div style="margin-top: 20px; text-align: center; color: #666;">
|
262 |
+
Powered by Voyage AI embeddings • Built with Gradio
|
263 |
+
</div>
|
264 |
+
""")
|
265 |
+
|
266 |
+
return demo
|
utils.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
class SafeProgress:
|
6 |
+
"""Wrapper for progress tracking that handles None gracefully"""
|
7 |
+
def __init__(self, progress_obj=None):
|
8 |
+
self.progress = progress_obj
|
9 |
+
|
10 |
+
def __call__(self, value, desc=""):
|
11 |
+
if self.progress is not None:
|
12 |
+
try:
|
13 |
+
self.progress(value, desc=desc)
|
14 |
+
except:
|
15 |
+
print(f"Progress {value}: {desc}")
|
16 |
+
else:
|
17 |
+
print(f"Progress {value}: {desc}")
|
18 |
+
|
19 |
+
def load_embeddings(embeddings_path):
|
20 |
+
"""Load ingredient embeddings from pickle file"""
|
21 |
+
print(f"Loading ingredient embeddings from {embeddings_path}")
|
22 |
+
with open(embeddings_path, "rb") as f:
|
23 |
+
ingredients_embeddings = pickle.load(f)
|
24 |
+
print(f"Loaded {len(ingredients_embeddings)} ingredient embeddings")
|
25 |
+
return ingredients_embeddings
|
26 |
+
|
27 |
+
def parse_product_file(file_path):
|
28 |
+
"""Parse a file containing product data and extract product names"""
|
29 |
+
try:
|
30 |
+
with open(file_path, 'r') as f:
|
31 |
+
try:
|
32 |
+
products_data = json.load(f)
|
33 |
+
if isinstance(products_data, list):
|
34 |
+
# Extract product names if it's a list of objects with 'name' field
|
35 |
+
if all(isinstance(item, dict) for item in products_data):
|
36 |
+
product_names = [item.get('name', '') for item in products_data if isinstance(item, dict)]
|
37 |
+
else:
|
38 |
+
# If it's just a list of strings
|
39 |
+
product_names = [str(item) for item in products_data if item]
|
40 |
+
else:
|
41 |
+
# If it's just a list of product names
|
42 |
+
product_names = []
|
43 |
+
except json.JSONDecodeError:
|
44 |
+
# If not JSON, try reading as text file with one product per line
|
45 |
+
f.seek(0)
|
46 |
+
product_names = [line.strip() for line in f.readlines() if line.strip()]
|
47 |
+
except Exception as e:
|
48 |
+
raise Exception(f"Error reading file: {str(e)}")
|
49 |
+
|
50 |
+
return product_names
|
51 |
+
|
52 |
+
def format_categories_html(product, categories):
|
53 |
+
"""Format categories as HTML with color-coded confidence scores"""
|
54 |
+
html = f"<div style='margin-bottom: 10px;'><b>{product}</b></div>"
|
55 |
+
|
56 |
+
if not categories:
|
57 |
+
html += "<div style='color: #666; font-style: italic;'>No matching categories found.</div>"
|
58 |
+
return html
|
59 |
+
|
60 |
+
html += "<div style='margin-left: 15px;'>"
|
61 |
+
for i, (category, score) in enumerate(categories, 1):
|
62 |
+
# Color code based on confidence
|
63 |
+
if score >= 0.8:
|
64 |
+
color = "#1a8a38" # Strong green
|
65 |
+
elif score >= 0.65:
|
66 |
+
color = "#4caf50" # Medium green
|
67 |
+
elif score >= 0.5:
|
68 |
+
color = "#8bc34a" # Light green
|
69 |
+
else:
|
70 |
+
color = "#9e9e9e" # Gray
|
71 |
+
|
72 |
+
html += f"<div style='margin-bottom: 5px;'>{i}. <span style='font-weight: 500;'>{category}</span> <span style='color: {color}; font-weight: bold;'>({score:.3f})</span></div>"
|
73 |
+
|
74 |
+
html += "</div>"
|
75 |
+
return html
|