eaglelandsonce's picture
Create app.py
aa85c6d verified
raw
history blame
6.66 kB
# skew_normal_explorer_app.py
# Run locally:
# pip install -r requirements.txt
# python skew_normal_explorer_app.py
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from math import sqrt, pi
from scipy.stats import skewnorm
def theoretical_stats_skewnorm(alpha, mu, sigma):
"""
Compute theoretical moments for the Skew-Normal(alpha, loc=mu, scale=sigma).
Returns mean, median, mode (numeric), variance, std dev, IQR, skewness,
kurtosis (Pearson) & excess kurtosis.
"""
m, v, s, exk = skewnorm.stats(alpha, loc=mu, scale=sigma, moments="mvsk")
m = float(m); v = float(v); s = float(s); exk = float(exk)
std = float(np.sqrt(v))
# Quartiles
q1 = float(skewnorm.ppf(0.25, alpha, loc=mu, scale=sigma))
q3 = float(skewnorm.ppf(0.75, alpha, loc=mu, scale=sigma))
iqr = q3 - q1
# Median
median = float(skewnorm.ppf(0.5, alpha, loc=mu, scale=sigma))
# Mode via grid search
xs = np.linspace(m - 6*std, m + 6*std, 4001)
pdf_vals = skewnorm.pdf(xs, alpha, loc=mu, scale=sigma)
mode = float(xs[int(np.argmax(pdf_vals))])
return {
"mean": m,
"median": median,
"mode": mode,
"variance": v,
"std_dev": std,
"IQR": iqr,
"range": float("inf"),
"skewness": s,
"kurtosis": exk + 3.0,
"excess_kurtosis": exk
}
def sample_stats(sample):
n = len(sample)
if n < 2:
s_mean = float(sample[0]) if n == 1 else float("nan")
return {
"mean": s_mean, "median": s_mean, "mode": s_mean,
"variance": 0.0, "std_dev": 0.0, "IQR": 0.0, "range": 0.0,
"skewness": 0.0, "kurtosis": 3.0, "excess_kurtosis": 0.0
}
s = np.asarray(sample, dtype=float)
s_mean = float(np.mean(s))
s_median = float(np.median(s))
# Mode estimate via histogram
counts, bin_edges = np.histogram(s, bins=min(50, max(5, int(np.sqrt(n)))))
max_bin_idx = int(np.argmax(counts))
mode_est = float((bin_edges[max_bin_idx] + bin_edges[max_bin_idx+1]) / 2.0)
s_var = float(np.var(s, ddof=1))
s_std = float(np.sqrt(s_var))
q1, q3 = np.percentile(s, [25, 75])
iqr = q3 - q1
s_range = float(np.max(s) - np.min(s))
m2 = np.mean((s - s_mean)**2)
m3 = np.mean((s - s_mean)**3)
m4 = np.mean((s - s_mean)**4)
if m2 <= 0:
skew, kurt = 0.0, 3.0
else:
skew = m3 / (m2 ** 1.5)
kurt = m4 / (m2 ** 2)
ex_kurt = kurt - 3.0
return {
"mean": s_mean,
"median": s_median,
"mode": mode_est,
"variance": s_var,
"std_dev": s_std,
"IQR": iqr,
"range": s_range,
"skewness": skew,
"kurtosis": kurt,
"excess_kurtosis": ex_kurt
}
def format_stats_block(title, d):
range_str = "∞" if d["range"] == float("inf") else f"{d['range']:.6g}"
lines = [
f"**{title}**",
f"- Mean: {d['mean']:.6g}",
f"- Median: {d['median']:.6g}",
f"- Mode: {d['mode']:.6g}",
f"- Variance: {d['variance']:.6g}",
f"- Std Dev: {d['std_dev']:.6g}",
f"- IQR: {d['IQR']:.6g}",
f"- Range: {range_str}",
f"- Skewness: {d['skewness']:.6g}",
f"- Kurtosis: {d['kurtosis']:.6g}",
f"- Excess Kurtosis: {d['excess_kurtosis']:.6g}",
]
return "\n".join(lines)
def render(alpha, mu, sigma, n, seed, x_min, x_max, bins, show_hist, overlay_empirical_pdf):
sigma = max(1e-6, sigma)
if x_min >= x_max:
theo_tmp = theoretical_stats_skewnorm(alpha, mu, sigma)
m, std = theo_tmp["mean"], max(1e-9, theo_tmp["std_dev"])
x_min, x_max = m - 4*std, m + 4*std
x = np.linspace(x_min, x_max, 800)
y = skewnorm.pdf(x, alpha, loc=mu, scale=sigma)
rng = np.random.default_rng(int(seed))
sample = skewnorm.rvs(alpha, loc=mu, scale=sigma, size=int(n), random_state=rng)
theo = theoretical_stats_skewnorm(alpha, mu, sigma)
samp = sample_stats(sample)
fig, ax = plt.subplots(figsize=(8, 4.5), dpi=120)
ax.plot(x, y, label="Theoretical PDF (Skew-Normal)")
if show_hist:
ax.hist(sample, bins=int(bins), density=True, alpha=0.5, label="Sample histogram")
if overlay_empirical_pdf:
bw = 1.06 * max(1e-8, samp["std_dev"]) * (len(sample) ** (-1/5))
bw = max(bw, 1e-6)
diffs = (x.reshape(-1, 1) - sample.reshape(1, -1)) / bw
kernel_vals = np.exp(-0.5 * diffs**2) / (sqrt(2*pi) * bw)
kde = np.mean(kernel_vals, axis=1)
ax.plot(x, kde, linestyle="--", label="Empirical density (KDE-like)")
ax.set_title("Skew-Normal & Normal Explorer (α=0 gives Normal)")
ax.set_xlabel("x")
ax.set_ylabel("density")
ax.legend(loc="best")
ax.grid(True, linestyle="--")
left = format_stats_block("Theoretical (Skew-Normal)", theo)
right = format_stats_block("Sample (from sliders)", samp)
stats_md = left + "\n\n" + right
return fig, stats_md
with gr.Blocks(title="Skew-Normal & Normal Explorer") as demo:
gr.Markdown("# Skew-Normal & Normal Explorer")
gr.Markdown(
"Slide **α (skewness)** to skew left/right. **α=0 → Normal(μ, σ²)**. "
"Adjust μ, σ, n, and window. Compare theoretical vs sample stats."
)
with gr.Row():
with gr.Column(scale=1):
alpha = gr.Slider(-15.0, 15.0, value=0.0, step=0.1, label="Skewness (α)")
mu = gr.Slider(-10.0, 10.0, value=0.0, step=0.1, label="Location (μ)")
sigma = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Scale (σ)")
n = gr.Slider(10, 200000, value=2000, step=10, label="Sample size (n)")
seed = gr.Slider(0, 99999, value=42, step=1, label="Random seed")
with gr.Accordion("Plot window & layers", open=False):
x_min = gr.Number(value=-5.0, label="x min")
x_max = gr.Number(value=5.0, label="x max")
bins = gr.Slider(5, 200, value=40, step=1, label="Histogram bins")
show_hist = gr.Checkbox(value=True, label="Show sample histogram")
overlay_empirical_pdf = gr.Checkbox(value=False, label="Overlay empirical density (KDE-like)")
with gr.Column(scale=2):
plot = gr.Plot(label="Curve / Histogram")
stats = gr.Markdown(label="Descriptive Statistics")
inputs = [alpha, mu, sigma, n, seed, x_min, x_max, bins, show_hist, overlay_empirical_pdf]
demo.load(render, inputs=inputs, outputs=[plot, stats])
for w in inputs:
w.change(render, inputs=inputs, outputs=[plot, stats])
if __name__ == "__main__":
demo.launch()