File size: 6,656 Bytes
aa85c6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# skew_normal_explorer_app.py
# Run locally:
# pip install -r requirements.txt
# python skew_normal_explorer_app.py
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from math import sqrt, pi
from scipy.stats import skewnorm
def theoretical_stats_skewnorm(alpha, mu, sigma):
"""
Compute theoretical moments for the Skew-Normal(alpha, loc=mu, scale=sigma).
Returns mean, median, mode (numeric), variance, std dev, IQR, skewness,
kurtosis (Pearson) & excess kurtosis.
"""
m, v, s, exk = skewnorm.stats(alpha, loc=mu, scale=sigma, moments="mvsk")
m = float(m); v = float(v); s = float(s); exk = float(exk)
std = float(np.sqrt(v))
# Quartiles
q1 = float(skewnorm.ppf(0.25, alpha, loc=mu, scale=sigma))
q3 = float(skewnorm.ppf(0.75, alpha, loc=mu, scale=sigma))
iqr = q3 - q1
# Median
median = float(skewnorm.ppf(0.5, alpha, loc=mu, scale=sigma))
# Mode via grid search
xs = np.linspace(m - 6*std, m + 6*std, 4001)
pdf_vals = skewnorm.pdf(xs, alpha, loc=mu, scale=sigma)
mode = float(xs[int(np.argmax(pdf_vals))])
return {
"mean": m,
"median": median,
"mode": mode,
"variance": v,
"std_dev": std,
"IQR": iqr,
"range": float("inf"),
"skewness": s,
"kurtosis": exk + 3.0,
"excess_kurtosis": exk
}
def sample_stats(sample):
n = len(sample)
if n < 2:
s_mean = float(sample[0]) if n == 1 else float("nan")
return {
"mean": s_mean, "median": s_mean, "mode": s_mean,
"variance": 0.0, "std_dev": 0.0, "IQR": 0.0, "range": 0.0,
"skewness": 0.0, "kurtosis": 3.0, "excess_kurtosis": 0.0
}
s = np.asarray(sample, dtype=float)
s_mean = float(np.mean(s))
s_median = float(np.median(s))
# Mode estimate via histogram
counts, bin_edges = np.histogram(s, bins=min(50, max(5, int(np.sqrt(n)))))
max_bin_idx = int(np.argmax(counts))
mode_est = float((bin_edges[max_bin_idx] + bin_edges[max_bin_idx+1]) / 2.0)
s_var = float(np.var(s, ddof=1))
s_std = float(np.sqrt(s_var))
q1, q3 = np.percentile(s, [25, 75])
iqr = q3 - q1
s_range = float(np.max(s) - np.min(s))
m2 = np.mean((s - s_mean)**2)
m3 = np.mean((s - s_mean)**3)
m4 = np.mean((s - s_mean)**4)
if m2 <= 0:
skew, kurt = 0.0, 3.0
else:
skew = m3 / (m2 ** 1.5)
kurt = m4 / (m2 ** 2)
ex_kurt = kurt - 3.0
return {
"mean": s_mean,
"median": s_median,
"mode": mode_est,
"variance": s_var,
"std_dev": s_std,
"IQR": iqr,
"range": s_range,
"skewness": skew,
"kurtosis": kurt,
"excess_kurtosis": ex_kurt
}
def format_stats_block(title, d):
range_str = "∞" if d["range"] == float("inf") else f"{d['range']:.6g}"
lines = [
f"**{title}**",
f"- Mean: {d['mean']:.6g}",
f"- Median: {d['median']:.6g}",
f"- Mode: {d['mode']:.6g}",
f"- Variance: {d['variance']:.6g}",
f"- Std Dev: {d['std_dev']:.6g}",
f"- IQR: {d['IQR']:.6g}",
f"- Range: {range_str}",
f"- Skewness: {d['skewness']:.6g}",
f"- Kurtosis: {d['kurtosis']:.6g}",
f"- Excess Kurtosis: {d['excess_kurtosis']:.6g}",
]
return "\n".join(lines)
def render(alpha, mu, sigma, n, seed, x_min, x_max, bins, show_hist, overlay_empirical_pdf):
sigma = max(1e-6, sigma)
if x_min >= x_max:
theo_tmp = theoretical_stats_skewnorm(alpha, mu, sigma)
m, std = theo_tmp["mean"], max(1e-9, theo_tmp["std_dev"])
x_min, x_max = m - 4*std, m + 4*std
x = np.linspace(x_min, x_max, 800)
y = skewnorm.pdf(x, alpha, loc=mu, scale=sigma)
rng = np.random.default_rng(int(seed))
sample = skewnorm.rvs(alpha, loc=mu, scale=sigma, size=int(n), random_state=rng)
theo = theoretical_stats_skewnorm(alpha, mu, sigma)
samp = sample_stats(sample)
fig, ax = plt.subplots(figsize=(8, 4.5), dpi=120)
ax.plot(x, y, label="Theoretical PDF (Skew-Normal)")
if show_hist:
ax.hist(sample, bins=int(bins), density=True, alpha=0.5, label="Sample histogram")
if overlay_empirical_pdf:
bw = 1.06 * max(1e-8, samp["std_dev"]) * (len(sample) ** (-1/5))
bw = max(bw, 1e-6)
diffs = (x.reshape(-1, 1) - sample.reshape(1, -1)) / bw
kernel_vals = np.exp(-0.5 * diffs**2) / (sqrt(2*pi) * bw)
kde = np.mean(kernel_vals, axis=1)
ax.plot(x, kde, linestyle="--", label="Empirical density (KDE-like)")
ax.set_title("Skew-Normal & Normal Explorer (α=0 gives Normal)")
ax.set_xlabel("x")
ax.set_ylabel("density")
ax.legend(loc="best")
ax.grid(True, linestyle="--")
left = format_stats_block("Theoretical (Skew-Normal)", theo)
right = format_stats_block("Sample (from sliders)", samp)
stats_md = left + "\n\n" + right
return fig, stats_md
with gr.Blocks(title="Skew-Normal & Normal Explorer") as demo:
gr.Markdown("# Skew-Normal & Normal Explorer")
gr.Markdown(
"Slide **α (skewness)** to skew left/right. **α=0 → Normal(μ, σ²)**. "
"Adjust μ, σ, n, and window. Compare theoretical vs sample stats."
)
with gr.Row():
with gr.Column(scale=1):
alpha = gr.Slider(-15.0, 15.0, value=0.0, step=0.1, label="Skewness (α)")
mu = gr.Slider(-10.0, 10.0, value=0.0, step=0.1, label="Location (μ)")
sigma = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Scale (σ)")
n = gr.Slider(10, 200000, value=2000, step=10, label="Sample size (n)")
seed = gr.Slider(0, 99999, value=42, step=1, label="Random seed")
with gr.Accordion("Plot window & layers", open=False):
x_min = gr.Number(value=-5.0, label="x min")
x_max = gr.Number(value=5.0, label="x max")
bins = gr.Slider(5, 200, value=40, step=1, label="Histogram bins")
show_hist = gr.Checkbox(value=True, label="Show sample histogram")
overlay_empirical_pdf = gr.Checkbox(value=False, label="Overlay empirical density (KDE-like)")
with gr.Column(scale=2):
plot = gr.Plot(label="Curve / Histogram")
stats = gr.Markdown(label="Descriptive Statistics")
inputs = [alpha, mu, sigma, n, seed, x_min, x_max, bins, show_hist, overlay_empirical_pdf]
demo.load(render, inputs=inputs, outputs=[plot, stats])
for w in inputs:
w.change(render, inputs=inputs, outputs=[plot, stats])
if __name__ == "__main__":
demo.launch()
|