File size: 6,656 Bytes
aa85c6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# skew_normal_explorer_app.py
# Run locally:
#   pip install -r requirements.txt
#   python skew_normal_explorer_app.py

import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from math import sqrt, pi
from scipy.stats import skewnorm

def theoretical_stats_skewnorm(alpha, mu, sigma):
    """
    Compute theoretical moments for the Skew-Normal(alpha, loc=mu, scale=sigma).
    Returns mean, median, mode (numeric), variance, std dev, IQR, skewness,
    kurtosis (Pearson) & excess kurtosis.
    """
    m, v, s, exk = skewnorm.stats(alpha, loc=mu, scale=sigma, moments="mvsk")
    m = float(m); v = float(v); s = float(s); exk = float(exk)
    std = float(np.sqrt(v))

    # Quartiles
    q1 = float(skewnorm.ppf(0.25, alpha, loc=mu, scale=sigma))
    q3 = float(skewnorm.ppf(0.75, alpha, loc=mu, scale=sigma))
    iqr = q3 - q1

    # Median
    median = float(skewnorm.ppf(0.5, alpha, loc=mu, scale=sigma))

    # Mode via grid search
    xs = np.linspace(m - 6*std, m + 6*std, 4001)
    pdf_vals = skewnorm.pdf(xs, alpha, loc=mu, scale=sigma)
    mode = float(xs[int(np.argmax(pdf_vals))])

    return {
        "mean": m,
        "median": median,
        "mode": mode,
        "variance": v,
        "std_dev": std,
        "IQR": iqr,
        "range": float("inf"),
        "skewness": s,
        "kurtosis": exk + 3.0,
        "excess_kurtosis": exk
    }

def sample_stats(sample):
    n = len(sample)
    if n < 2:
        s_mean = float(sample[0]) if n == 1 else float("nan")
        return {
            "mean": s_mean, "median": s_mean, "mode": s_mean,
            "variance": 0.0, "std_dev": 0.0, "IQR": 0.0, "range": 0.0,
            "skewness": 0.0, "kurtosis": 3.0, "excess_kurtosis": 0.0
        }

    s = np.asarray(sample, dtype=float)
    s_mean = float(np.mean(s))
    s_median = float(np.median(s))

    # Mode estimate via histogram
    counts, bin_edges = np.histogram(s, bins=min(50, max(5, int(np.sqrt(n)))))
    max_bin_idx = int(np.argmax(counts))
    mode_est = float((bin_edges[max_bin_idx] + bin_edges[max_bin_idx+1]) / 2.0)

    s_var = float(np.var(s, ddof=1))
    s_std = float(np.sqrt(s_var))

    q1, q3 = np.percentile(s, [25, 75])
    iqr = q3 - q1
    s_range = float(np.max(s) - np.min(s))

    m2 = np.mean((s - s_mean)**2)
    m3 = np.mean((s - s_mean)**3)
    m4 = np.mean((s - s_mean)**4)
    if m2 <= 0:
        skew, kurt = 0.0, 3.0
    else:
        skew = m3 / (m2 ** 1.5)
        kurt = m4 / (m2 ** 2)
    ex_kurt = kurt - 3.0

    return {
        "mean": s_mean,
        "median": s_median,
        "mode": mode_est,
        "variance": s_var,
        "std_dev": s_std,
        "IQR": iqr,
        "range": s_range,
        "skewness": skew,
        "kurtosis": kurt,
        "excess_kurtosis": ex_kurt
    }

def format_stats_block(title, d):
    range_str = "∞" if d["range"] == float("inf") else f"{d['range']:.6g}"
    lines = [
        f"**{title}**",
        f"- Mean: {d['mean']:.6g}",
        f"- Median: {d['median']:.6g}",
        f"- Mode: {d['mode']:.6g}",
        f"- Variance: {d['variance']:.6g}",
        f"- Std Dev: {d['std_dev']:.6g}",
        f"- IQR: {d['IQR']:.6g}",
        f"- Range: {range_str}",
        f"- Skewness: {d['skewness']:.6g}",
        f"- Kurtosis: {d['kurtosis']:.6g}",
        f"- Excess Kurtosis: {d['excess_kurtosis']:.6g}",
    ]
    return "\n".join(lines)

def render(alpha, mu, sigma, n, seed, x_min, x_max, bins, show_hist, overlay_empirical_pdf):
    sigma = max(1e-6, sigma)

    if x_min >= x_max:
        theo_tmp = theoretical_stats_skewnorm(alpha, mu, sigma)
        m, std = theo_tmp["mean"], max(1e-9, theo_tmp["std_dev"])
        x_min, x_max = m - 4*std, m + 4*std

    x = np.linspace(x_min, x_max, 800)
    y = skewnorm.pdf(x, alpha, loc=mu, scale=sigma)

    rng = np.random.default_rng(int(seed))
    sample = skewnorm.rvs(alpha, loc=mu, scale=sigma, size=int(n), random_state=rng)

    theo = theoretical_stats_skewnorm(alpha, mu, sigma)
    samp = sample_stats(sample)

    fig, ax = plt.subplots(figsize=(8, 4.5), dpi=120)
    ax.plot(x, y, label="Theoretical PDF (Skew-Normal)")
    if show_hist:
        ax.hist(sample, bins=int(bins), density=True, alpha=0.5, label="Sample histogram")

    if overlay_empirical_pdf:
        bw = 1.06 * max(1e-8, samp["std_dev"]) * (len(sample) ** (-1/5))
        bw = max(bw, 1e-6)
        diffs = (x.reshape(-1, 1) - sample.reshape(1, -1)) / bw
        kernel_vals = np.exp(-0.5 * diffs**2) / (sqrt(2*pi) * bw)
        kde = np.mean(kernel_vals, axis=1)
        ax.plot(x, kde, linestyle="--", label="Empirical density (KDE-like)")

    ax.set_title("Skew-Normal & Normal Explorer (α=0 gives Normal)")
    ax.set_xlabel("x")
    ax.set_ylabel("density")
    ax.legend(loc="best")
    ax.grid(True, linestyle="--")

    left = format_stats_block("Theoretical (Skew-Normal)", theo)
    right = format_stats_block("Sample (from sliders)", samp)
    stats_md = left + "\n\n" + right

    return fig, stats_md

with gr.Blocks(title="Skew-Normal & Normal Explorer") as demo:
    gr.Markdown("# Skew-Normal & Normal Explorer")
    gr.Markdown(
        "Slide **α (skewness)** to skew left/right. **α=0 → Normal(μ, σ²)**. "
        "Adjust μ, σ, n, and window. Compare theoretical vs sample stats."
    )

    with gr.Row():
        with gr.Column(scale=1):
            alpha = gr.Slider(-15.0, 15.0, value=0.0, step=0.1, label="Skewness (α)")
            mu = gr.Slider(-10.0, 10.0, value=0.0, step=0.1, label="Location (μ)")
            sigma = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Scale (σ)")
            n = gr.Slider(10, 200000, value=2000, step=10, label="Sample size (n)")
            seed = gr.Slider(0, 99999, value=42, step=1, label="Random seed")

            with gr.Accordion("Plot window & layers", open=False):
                x_min = gr.Number(value=-5.0, label="x min")
                x_max = gr.Number(value=5.0, label="x max")
                bins = gr.Slider(5, 200, value=40, step=1, label="Histogram bins")
                show_hist = gr.Checkbox(value=True, label="Show sample histogram")
                overlay_empirical_pdf = gr.Checkbox(value=False, label="Overlay empirical density (KDE-like)")

        with gr.Column(scale=2):
            plot = gr.Plot(label="Curve / Histogram")
            stats = gr.Markdown(label="Descriptive Statistics")

    inputs = [alpha, mu, sigma, n, seed, x_min, x_max, bins, show_hist, overlay_empirical_pdf]
    demo.load(render, inputs=inputs, outputs=[plot, stats])
    for w in inputs:
        w.change(render, inputs=inputs, outputs=[plot, stats])

if __name__ == "__main__":
    demo.launch()