File size: 28,245 Bytes
3d4f13a 1be67ab cf370ec 1be67ab be17e77 1be67ab be17e77 1be67ab be17e77 1be67ab be17e77 1be67ab e1a0d4b 1be67ab be17e77 1be67ab e1a0d4b 1be67ab be17e77 1be67ab be17e77 1be67ab 3d4f13a be17e77 1335053 e1a0d4b 1be67ab cf370ec 1be67ab 3d4f13a 1be67ab cf370ec df987a3 1be67ab df987a3 1be67ab e1a0d4b be17e77 e1a0d4b 1be67ab e1a0d4b 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab df987a3 cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec be17e77 1be67ab df987a3 1be67ab be17e77 1be67ab be17e77 df987a3 be17e77 1be67ab be17e77 df987a3 be17e77 df987a3 be17e77 df987a3 1be67ab be17e77 df987a3 be17e77 1be67ab be17e77 e1a0d4b be17e77 e1a0d4b be17e77 1be67ab be17e77 1be67ab be17e77 1be67ab be17e77 df987a3 be17e77 1be67ab be17e77 1be67ab df987a3 be17e77 df987a3 be17e77 cf370ec 1be67ab cf370ec 1be67ab be17e77 cf370ec 1be67ab 65e0f55 1be67ab 65e0f55 1be67ab 65e0f55 1be67ab be17e77 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab be17e77 1be67ab cf370ec 1be67ab be17e77 1be67ab be17e77 1be67ab be17e77 1be67ab cf370ec 1be67ab be17e77 1be67ab cf370ec 1be67ab be17e77 1be67ab cf370ec 1be67ab be17e77 1be67ab cf370ec 1be67ab be17e77 1be67ab be17e77 1be67ab be17e77 1be67ab be17e77 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec be17e77 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab 7ac95a7 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec 1be67ab cf370ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import pandas as pd
import time
import re
from datetime import datetime
import json
import tempfile
import os
import uuid
# Global model cache
_model_cache = {}
def load_translation_models():
"""Load and cache both translation models"""
global _model_cache
# Check if models are already cached
if 'en_ss_pipeline' in _model_cache and 'ss_en_pipeline' in _model_cache:
return _model_cache['en_ss_pipeline'], _model_cache['ss_en_pipeline']
try:
print("Loading translation models...")
# English to Siswati
print("Loading English to Siswati model...")
en_ss_tokenizer = AutoTokenizer.from_pretrained("dsfsi/en-ss-m2m100-combo")
en_ss_model = AutoModelForSeq2SeqLM.from_pretrained("dsfsi/en-ss-m2m100-combo")
# Fix: Add src_lang and tgt_lang parameters
en_ss_pipeline = pipeline(
"translation",
model=en_ss_model,
tokenizer=en_ss_tokenizer,
src_lang="en",
tgt_lang="ss"
)
# Siswati to English
print("Loading Siswati to English model...")
ss_en_tokenizer = AutoTokenizer.from_pretrained("dsfsi/ss-en-m2m100-combo")
ss_en_model = AutoModelForSeq2SeqLM.from_pretrained("dsfsi/ss-en-m2m100-combo")
# Fix: Add src_lang and tgt_lang parameters
ss_en_pipeline = pipeline(
"translation",
model=ss_en_model,
tokenizer=ss_en_tokenizer,
src_lang="ss",
tgt_lang="en"
)
# Cache the models
_model_cache['en_ss_pipeline'] = en_ss_pipeline
_model_cache['ss_en_pipeline'] = ss_en_pipeline
print("Models loaded successfully!")
return en_ss_pipeline, ss_en_pipeline
except Exception as e:
print(f"Error loading models: {e}")
return None, None
def get_translators():
"""Get cached translators, loading them if necessary"""
global _model_cache
if 'en_ss_pipeline' not in _model_cache or 'ss_en_pipeline' not in _model_cache:
return load_translation_models()
return _model_cache['en_ss_pipeline'], _model_cache['ss_en_pipeline']
def translate_with_fallback(text, direction):
"""Translation function with fallback method if pipeline fails"""
try:
# Get translators
en_ss_translator, ss_en_translator = get_translators()
if direction == "English β Siswati":
if en_ss_translator is None:
raise Exception("English to Siswati model not loaded")
# Try with pipeline first
try:
result = en_ss_translator(text, max_length=512)
return result[0]['translation_text']
except Exception as pipeline_error:
print(f"Pipeline failed, trying direct model approach: {pipeline_error}")
# Fallback: Use model directly
tokenizer = AutoTokenizer.from_pretrained("dsfsi/en-ss-m2m100-combo")
model = AutoModelForSeq2SeqLM.from_pretrained("dsfsi/en-ss-m2m100-combo")
# Set language tokens
tokenizer.src_lang = "en"
encoded = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
# Force target language token
forced_bos_token_id = tokenizer.get_lang_id("ss")
with torch.no_grad():
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=forced_bos_token_id,
max_length=512
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
else: # Siswati β English
if ss_en_translator is None:
raise Exception("Siswati to English model not loaded")
# Try with pipeline first
try:
result = ss_en_translator(text, max_length=512)
return result[0]['translation_text']
except Exception as pipeline_error:
print(f"Pipeline failed, trying direct model approach: {pipeline_error}")
# Fallback: Use model directly
tokenizer = AutoTokenizer.from_pretrained("dsfsi/ss-en-m2m100-combo")
model = AutoModelForSeq2SeqLM.from_pretrained("dsfsi/ss-en-m2m100-combo")
# Set language tokens
tokenizer.src_lang = "ss"
encoded = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
# Force target language token
forced_bos_token_id = tokenizer.get_lang_id("en")
with torch.no_grad():
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=forced_bos_token_id,
max_length=512
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
except Exception as e:
raise Exception(f"Translation failed: {str(e)}")
def analyze_siswati_features(text):
"""Analyze Siswati-specific linguistic features"""
features = {}
# Click consonants (c, q, x sounds)
click_pattern = r'[cqx]'
features['click_consonants'] = len(re.findall(click_pattern, text.lower()))
# Tone markers (acute and grave accents)
tone_pattern = r'[Ñà éèΓìóòúù]'
features['tone_markers'] = len(re.findall(tone_pattern, text.lower()))
# Potential agglutination (words longer than 10 characters)
words = text.split()
long_words = [word for word in words if len(word) > 10]
features['potential_agglutination'] = len(long_words)
features['long_words'] = long_words[:5] # Show first 5 examples
return features
def calculate_linguistic_metrics(text):
"""Calculate comprehensive linguistic metrics"""
if not text.strip():
return {}
# Basic counts
char_count = len(text)
word_count = len(text.split())
sentence_count = len([s for s in re.split(r'[.!?]+', text) if s.strip()])
# Advanced metrics
words = text.split()
unique_words = set(words)
lexical_diversity = len(unique_words) / word_count if word_count > 0 else 0
avg_word_length = sum(len(word) for word in words) / word_count if word_count > 0 else 0
return {
'char_count': char_count,
'word_count': word_count,
'sentence_count': sentence_count,
'lexical_diversity': lexical_diversity,
'avg_word_length': avg_word_length,
'unique_words': len(unique_words)
}
def create_empty_metrics_table():
"""Create an empty metrics table for error cases"""
return pd.DataFrame({
'Metric': ['Words', 'Characters', 'Sentences', 'Unique Words', 'Avg Word Length', 'Lexical Diversity'],
'Source Text': [0, 0, 0, 0, '0.0', '0.000'],
'Target Text': [0, 0, 0, 0, '0.0', '0.000']
})
def translate_text(text, direction):
"""Main translation function with linguistic analysis"""
if not text.strip():
return "Please enter text to translate.", "No analysis available.", create_empty_metrics_table()
start_time = time.time()
try:
# Perform translation using the fallback method
translated_text = translate_with_fallback(text, direction)
# Analyze source and target text
source_metrics = calculate_linguistic_metrics(text)
target_metrics = calculate_linguistic_metrics(translated_text)
# Analyze Siswati features based on direction
if direction == "English β Siswati":
siswati_features = analyze_siswati_features(translated_text)
else:
siswati_features = analyze_siswati_features(text)
processing_time = time.time() - start_time
# Create linguistic analysis report
analysis_report = create_analysis_report(
source_metrics, target_metrics, siswati_features,
processing_time, direction
)
# Create metrics table
metrics_table = create_metrics_table(source_metrics, target_metrics, processing_time)
return translated_text, analysis_report, metrics_table
except Exception as e:
return f"Translation error: {str(e)}", f"Analysis failed: {str(e)}", create_empty_metrics_table()
def create_analysis_report(source_metrics, target_metrics, siswati_features, processing_time, direction):
"""Create a comprehensive linguistic analysis report"""
report = f"""
## π Linguistic Analysis Report
### Translation Details
- **Direction**: {direction}
- **Processing Time**: {processing_time:.2f} seconds
### Text Complexity Metrics
| Metric | Source | Target | Ratio |
|--------|--------|--------|-------|
| Word Count | {source_metrics.get('word_count', 0)} | {target_metrics.get('word_count', 0)} | {target_metrics.get('word_count', 0) / max(source_metrics.get('word_count', 1), 1):.2f} |
| Character Count | {source_metrics.get('char_count', 0)} | {target_metrics.get('char_count', 0)} | {target_metrics.get('char_count', 0) / max(source_metrics.get('char_count', 1), 1):.2f} |
| Sentence Count | {source_metrics.get('sentence_count', 0)} | {target_metrics.get('sentence_count', 0)} | {target_metrics.get('sentence_count', 0) / max(source_metrics.get('sentence_count', 1), 1):.2f} |
| Avg Word Length | {source_metrics.get('avg_word_length', 0):.1f} | {target_metrics.get('avg_word_length', 0):.1f} | {target_metrics.get('avg_word_length', 0) / max(source_metrics.get('avg_word_length', 1), 1):.2f} |
| Lexical Diversity | {source_metrics.get('lexical_diversity', 0):.3f} | {target_metrics.get('lexical_diversity', 0):.3f} | {target_metrics.get('lexical_diversity', 0) / max(source_metrics.get('lexical_diversity', 0.001), 0.001):.2f} |
### Siswati-Specific Features
- **Click Consonants**: {siswati_features.get('click_consonants', 0)} detected
- **Tone Markers**: {siswati_features.get('tone_markers', 0)} detected
- **Potential Agglutination**: {siswati_features.get('potential_agglutination', 0)} words longer than 10 characters
"""
if siswati_features.get('long_words'):
report += f"- **Long Word Examples**: {', '.join(siswati_features['long_words'])}\n"
return report
def create_metrics_table(source_metrics, target_metrics, processing_time):
"""Create a DataFrame for metrics visualization"""
data = {
'Metric': ['Words', 'Characters', 'Sentences', 'Unique Words', 'Avg Word Length', 'Lexical Diversity'],
'Source Text': [
source_metrics.get('word_count', 0),
source_metrics.get('char_count', 0),
source_metrics.get('sentence_count', 0),
source_metrics.get('unique_words', 0),
f"{source_metrics.get('avg_word_length', 0):.1f}",
f"{source_metrics.get('lexical_diversity', 0):.3f}"
],
'Target Text': [
target_metrics.get('word_count', 0),
target_metrics.get('char_count', 0),
target_metrics.get('sentence_count', 0),
target_metrics.get('unique_words', 0),
f"{target_metrics.get('avg_word_length', 0):.1f}",
f"{target_metrics.get('lexical_diversity', 0):.3f}"
]
}
return pd.DataFrame(data)
def secure_file_processing(file_obj, direction):
"""Securely process uploaded files with proper cleanup"""
if file_obj is None:
return "Please upload a file.", pd.DataFrame()
# Create a unique temporary directory for this processing session
session_id = str(uuid.uuid4())
temp_dir = None
try:
# Create secure temporary directory
temp_dir = tempfile.mkdtemp(prefix=f"translation_{session_id}_")
# Get file extension and validate
file_ext = os.path.splitext(file_obj.name)[1].lower()
if file_ext not in ['.txt', '.csv']:
return "Only .txt and .csv files are supported.", pd.DataFrame()
# Create secure temporary file path
temp_file_path = os.path.join(temp_dir, f"upload_{session_id}{file_ext}")
# Copy uploaded file to secure location
import shutil
shutil.copy2(file_obj.name, temp_file_path)
# Process file based on type
texts = []
if file_ext == '.csv':
try:
df = pd.read_csv(temp_file_path)
if df.empty:
return "The uploaded CSV file is empty.", pd.DataFrame()
# Assume first column contains text to translate
texts = df.iloc[:, 0].dropna().astype(str).tolist()
except Exception as e:
return f"Error reading CSV file: {str(e)}", pd.DataFrame()
else: # .txt file
try:
with open(temp_file_path, 'r', encoding='utf-8') as f:
content = f.read()
texts = [line.strip() for line in content.split('\n') if line.strip()]
except Exception as e:
return f"Error reading text file: {str(e)}", pd.DataFrame()
if not texts:
return "No text found in the uploaded file.", pd.DataFrame()
# Limit batch size for performance and security
max_batch_size = 10
if len(texts) > max_batch_size:
texts = texts[:max_batch_size]
warning_msg = f"Processing limited to first {max_batch_size} entries for security and performance reasons."
else:
warning_msg = ""
# Process translations
results = []
for i, text in enumerate(texts):
if len(text.strip()) == 0:
continue
# Limit individual text length for security
if len(text) > 1000:
text = text[:1000] + "..."
# Perform translation using the fallback method
try:
translated = translate_with_fallback(text, direction)
except Exception as e:
translated = f"Translation error: {str(e)}"
results.append({
'Index': i + 1,
'Original': text[:100] + '...' if len(text) > 100 else text,
'Translation': translated[:100] + '...' if len(translated) > 100 else translated
})
if not results:
return "No valid text entries found to translate.", pd.DataFrame()
results_df = pd.DataFrame(results)
summary = f"Successfully processed {len(results)} text entries."
if warning_msg:
summary = f"{summary} {warning_msg}"
return summary, results_df
except Exception as e:
return f"Error processing file: {str(e)}", pd.DataFrame()
finally:
# Clean up temporary files and directory
if temp_dir and os.path.exists(temp_dir):
try:
import shutil
shutil.rmtree(temp_dir)
except Exception as e:
print(f"Warning: Could not clean up temporary directory: {e}")
# Define example texts
TRANSLATION_EXAMPLES = [
["English β Siswati", "Hello, how are you today?"],
["English β Siswati", "The weather is beautiful this morning."],
["English β Siswati", "I am learning Siswati language."],
["English β Siswati", "Thank you for your help."],
["Siswati β English", "Sawubona, unjani namuhla?"],
["Siswati β English", "Siyabonga ngekusita kwakho."],
["Siswati β English", "Lolu luhle kakhulu."],
["Siswati β English", "Ngiyakuthanda."]
]
def create_gradio_interface():
"""Create the main Gradio interface with security measures"""
with gr.Blocks(
title="π¬ Siswati-English Linguistic Translation Tool",
theme=gr.themes.Soft(),
css="""
.gradio-container {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}
.main-header {text-align: center; padding: 2rem 0;}
.dsfsi-logo {text-align: center; margin-bottom: 1rem;}
.dsfsi-logo img {max-width: 300px; height: auto;}
.metric-table {font-size: 0.9em;}
.feature-highlight {background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 10px; margin: 1rem 0;}
"""
) as demo:
# Header Section with DSFSI Logo
gr.HTML("""
<div class="dsfsi-logo">
<img src="https://www.dsfsi.co.za/images/logo_transparent_expanded.png" alt="DSFSI Logo" />
</div>
<div class="main-header">
<h1>π¬ Siswati-English Linguistic Translation Tool</h1>
<p style="font-size: 1.1em; color: #666; max-width: 800px; margin: 0 auto;">
Advanced AI-powered translation system with comprehensive linguistic analysis features,
designed specifically for linguists, researchers, and language documentation projects.
</p>
</div>
""")
# Main Content Tabs
with gr.Tabs():
# Single Translation Tab
with gr.Tab("π Translation & Analysis"):
gr.Markdown("""
### Real-time Translation with Linguistic Analysis
Translate between English and Siswati while getting detailed linguistic insights including morphological complexity, lexical diversity, and Siswati-specific features.
""")
with gr.Row():
with gr.Column(scale=1):
direction = gr.Dropdown(
choices=["English β Siswati", "Siswati β English"],
label="Translation Direction",
value="English β Siswati"
)
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text to translate...",
lines=4,
max_lines=10
)
translate_btn = gr.Button("π Translate & Analyze", variant="primary", size="lg")
with gr.Column(scale=1):
output_text = gr.Textbox(
label="Translation",
lines=4,
interactive=False
)
# Examples Section
gr.Markdown("### π Example Translations")
gr.Examples(
examples=TRANSLATION_EXAMPLES,
inputs=[direction, input_text],
label="Click an example to try it:"
)
# Analysis Results
with gr.Accordion("π Detailed Linguistic Analysis", open=False):
analysis_output = gr.Markdown(label="Analysis Report")
with gr.Accordion("π Metrics Table", open=False):
metrics_table = gr.Dataframe(
label="Comparative Metrics",
headers=["Metric", "Source Text", "Target Text"],
interactive=False
)
# Connect translation function
translate_btn.click(
fn=translate_text,
inputs=[input_text, direction],
outputs=[output_text, analysis_output, metrics_table]
)
# Batch Processing Tab
with gr.Tab("π Batch Processing"):
gr.Markdown("""
### Secure Corpus Analysis & Batch Translation
Upload text files or CSV files for batch translation and corpus analysis. Files are processed securely and temporarily.
**Security Features:**
- Files are processed in isolated temporary directories
- No file persistence or history
- Automatic cleanup after processing
- Limited to first 10 entries for performance
""")
with gr.Row():
with gr.Column():
batch_direction = gr.Dropdown(
choices=["English β Siswati", "Siswati β English"],
label="Translation Direction",
value="English β Siswati"
)
file_upload = gr.File(
label="Upload File (Max 5MB)",
file_types=[".txt", ".csv"],
type="filepath",
file_count="single"
)
batch_btn = gr.Button("π Process Batch", variant="primary")
gr.Markdown("""
**Supported formats:**
- `.txt` files: One text per line
- `.csv` files: Text in first column
- **Security limits**: Max 10 entries, 1000 chars per text
- **Privacy**: Files are automatically deleted after processing
""")
with gr.Column():
batch_summary = gr.Textbox(
label="Processing Summary",
lines=3,
interactive=False
)
batch_results = gr.Dataframe(
label="Translation Results",
interactive=False,
wrap=True
)
batch_btn.click(
fn=secure_file_processing,
inputs=[file_upload, batch_direction],
outputs=[batch_summary, batch_results]
)
# Research Tools Tab
with gr.Tab("π¬ Research Tools"):
gr.Markdown("""
### Advanced Linguistic Analysis Tools
Explore detailed linguistic features without data persistence.
""")
with gr.Row():
with gr.Column():
research_text = gr.Textbox(
label="Text for Analysis",
lines=6,
placeholder="Enter Siswati or English text for detailed analysis...",
max_lines=15
)
analyze_btn = gr.Button("π Analyze Text", variant="primary")
with gr.Column():
research_output = gr.JSON(
label="Detailed Analysis Results"
)
def detailed_analysis(text):
"""Perform detailed linguistic analysis without storing data"""
if not text.strip():
return {}
# Limit text length for security
if len(text) > 2000:
text = text[:2000] + "..."
metrics = calculate_linguistic_metrics(text)
siswati_features = analyze_siswati_features(text)
# Return analysis without sensitive information
return {
"basic_metrics": metrics,
"siswati_features": siswati_features,
"text_length": len(text),
"analysis_completed": True
}
analyze_btn.click(
fn=detailed_analysis,
inputs=research_text,
outputs=research_output
)
# Language Information
gr.Markdown("""
### π£οΈ About Siswati Language
**Siswati** (also known as **Swati** or **Swazi**) is a Bantu language spoken by approximately 2.3 million people, primarily in:
- πΈπΏ **Eswatini** (Kingdom of Eswatini) - Official language
- πΏπ¦ **South Africa** - One of 11 official languages
**Key Linguistic Features:**
- **Language Family**: Niger-Congo β Bantu β Southeast Bantu
- **Script**: Latin alphabet
- **Characteristics**: Agglutinative morphology, click consonants, tonal
- **ISO Code**: ss (ISO 639-1), ssw (ISO 639-3)
""")
# Footer Section
gr.Markdown("""
---
### π Model Information & Citation
**Models Used:**
- **English β Siswati**: [`dsfsi/en-ss-m2m100-combo`](https://huggingface.co/dsfsi/en-ss-m2m100-combo)
- **Siswati β English**: [`dsfsi/ss-en-m2m100-combo`](https://huggingface.co/dsfsi/ss-en-m2m100-combo)
Both models are based on Meta's M2M100 architecture, fine-tuned specifically for Siswati-English translation pairs by the **Data Science for Social Impact Research Group**.
**Training Data**: Models trained on the Vuk'uzenzele and ZA-gov-multilingual South African corpora.
### π Privacy & Security
- No conversation history is stored
- Uploaded files are automatically deleted after processing
- All processing happens in isolated temporary environments
- No user data persistence
### π Acknowledgments
We thank **Thapelo Sindanie** and **Unarine Netshifhefhe** for their contributions to this work.
### π Citation
```bibtex
@inproceedings{lastrucci2023preparing,
title={Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora},
author={Lastrucci, Richard and Rajab, Jenalea and Shingange, Matimba and Njini, Daniel and Marivate, Vukosi},
booktitle={Proceedings of the Fourth workshop on Resources for African Indigenous Languages (RAIL 2023)},
pages={18--25},
year={2023}
}
```
**Links**:
- [DSFSI](https://www.dsfsi.co.za/)
- [EnβSs Model](https://huggingface.co/dsfsi/en-ss-m2m100-combo) | [SsβEn Model](https://huggingface.co/dsfsi/ss-en-m2m100-combo)
- [Vuk'uzenzele Data](https://github.com/dsfsi/vukuzenzele-nlp) | [ZA-gov Data](https://github.com/dsfsi/gov-za-multilingual)
- [Research Feedback](https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform)
---
**Built with β€οΈ for the African NLP community**
""")
return demo
# Create and launch the interface
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |