Update app.py
Browse files
app.py
CHANGED
@@ -1,627 +1,477 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
3 |
import time
|
4 |
-
import json
|
5 |
-
import csv
|
6 |
-
import io
|
7 |
-
from transformers import pipeline
|
8 |
-
from typing import Tuple, Optional, List, Dict
|
9 |
-
import traceback
|
10 |
-
from datetime import datetime
|
11 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
logger = logging.getLogger(__name__)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
self.translation_history = []
|
21 |
-
self.load_models()
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
)
|
39 |
-
logger.info("Models loaded successfully!")
|
40 |
-
except Exception as e:
|
41 |
-
logger.error(f"Error loading models: {str(e)}")
|
42 |
-
raise e
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
return analysis
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
# Input validation
|
84 |
-
if len(text) > 2000: # Increased limit for linguistic work
|
85 |
-
return "", "⚠️ Text is too long. Please limit to 2000 characters.", False, {}
|
86 |
-
|
87 |
-
try:
|
88 |
-
start_time = time.time()
|
89 |
-
|
90 |
-
# Determine source and target languages
|
91 |
-
if direction == 'English → Siswati':
|
92 |
-
translator = self.translators['en_to_ss']
|
93 |
-
source_lang = "English"
|
94 |
-
target_lang = "Siswati"
|
95 |
-
source_code = "en"
|
96 |
-
target_code = "ss"
|
97 |
-
else:
|
98 |
-
translator = self.translators['ss_to_en']
|
99 |
-
source_lang = "Siswati"
|
100 |
-
target_lang = "English"
|
101 |
-
source_code = "ss"
|
102 |
-
target_code = "en"
|
103 |
-
|
104 |
-
logger.info(f"Translating from {source_lang} to {target_lang}")
|
105 |
-
|
106 |
-
# Analyze source text
|
107 |
-
source_analysis = self.analyze_text_complexity(text, source_code)
|
108 |
-
|
109 |
-
# Perform translation
|
110 |
-
result = translator(
|
111 |
-
text,
|
112 |
-
max_length=512,
|
113 |
-
early_stopping=True,
|
114 |
-
do_sample=False,
|
115 |
-
num_beams=4 # Better quality for linguistic analysis
|
116 |
-
)
|
117 |
-
|
118 |
-
translation = result[0]['translation_text']
|
119 |
-
|
120 |
-
# Analyze translated text
|
121 |
-
target_analysis = self.analyze_text_complexity(translation, target_code)
|
122 |
-
|
123 |
-
# Calculate processing time
|
124 |
-
processing_time = time.time() - start_time
|
125 |
-
|
126 |
-
# Linguistic comparison
|
127 |
-
analysis = {
|
128 |
-
'source': source_analysis,
|
129 |
-
'target': target_analysis,
|
130 |
-
'translation_ratio': len(translation) / len(text) if text else 0,
|
131 |
-
'word_ratio': target_analysis['word_count'] / source_analysis['word_count'] if source_analysis['word_count'] else 0,
|
132 |
-
'processing_time': processing_time,
|
133 |
-
'timestamp': datetime.now().isoformat()
|
134 |
-
}
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
history_entry = {
|
139 |
-
'source_text': text,
|
140 |
-
'translated_text': translation,
|
141 |
-
'direction': direction,
|
142 |
-
'source_lang': source_lang,
|
143 |
-
'target_lang': target_lang,
|
144 |
-
'analysis': analysis,
|
145 |
-
'timestamp': datetime.now().isoformat()
|
146 |
-
}
|
147 |
-
self.translation_history.append(history_entry)
|
148 |
|
149 |
-
#
|
150 |
-
|
|
|
|
|
151 |
|
152 |
-
|
|
|
|
|
153 |
|
154 |
-
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
return "", error_msg, False, {}
|
161 |
-
|
162 |
-
def batch_translate(self, text_list: List[str], direction: str) -> List[Dict]:
|
163 |
-
"""Translate multiple texts for corpus analysis"""
|
164 |
-
results = []
|
165 |
-
for i, text in enumerate(text_list):
|
166 |
-
if text.strip():
|
167 |
-
translation, status, success, analysis = self.translate_text(text, direction, False)
|
168 |
-
results.append({
|
169 |
-
'index': i + 1,
|
170 |
-
'source': text,
|
171 |
-
'translation': translation,
|
172 |
-
'success': success,
|
173 |
-
'analysis': analysis
|
174 |
-
})
|
175 |
-
return results
|
176 |
-
|
177 |
-
def export_history_csv(self) -> str:
|
178 |
-
"""Export translation history as CSV for linguistic analysis"""
|
179 |
-
if not self.translation_history:
|
180 |
-
return None
|
181 |
|
182 |
-
|
183 |
-
writer = csv.writer(output)
|
184 |
|
185 |
-
#
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
'Lexical Diversity (Source)', 'Lexical Diversity (Target)',
|
191 |
-
'Processing Time (s)'
|
192 |
-
])
|
193 |
|
194 |
-
#
|
195 |
-
|
196 |
-
analysis = entry['analysis']
|
197 |
-
writer.writerow([
|
198 |
-
entry['timestamp'],
|
199 |
-
entry['source_lang'],
|
200 |
-
entry['target_lang'],
|
201 |
-
entry['source_text'],
|
202 |
-
entry['translated_text'],
|
203 |
-
analysis['source']['word_count'],
|
204 |
-
analysis['target']['word_count'],
|
205 |
-
analysis['word_ratio'],
|
206 |
-
analysis['source']['character_count'],
|
207 |
-
analysis['target']['character_count'],
|
208 |
-
analysis['translation_ratio'],
|
209 |
-
analysis['source']['lexical_diversity'],
|
210 |
-
analysis['target']['lexical_diversity'],
|
211 |
-
analysis['processing_time']
|
212 |
-
])
|
213 |
|
214 |
-
return
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
# Custom CSS for linguistic interface
|
220 |
-
custom_css = """
|
221 |
-
#logo {
|
222 |
-
display: block;
|
223 |
-
margin: 0 auto 20px auto;
|
224 |
-
}
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
padding: 20px;
|
231 |
-
margin: 10px 0;
|
232 |
-
}
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
margin: 5px;
|
239 |
-
border-left: 4px solid #0891b2;
|
240 |
-
}
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
}
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
padding: 15px;
|
278 |
-
border-radius: 8px;
|
279 |
-
border: 1px solid #e2e8f0;
|
280 |
-
text-align: center;
|
281 |
-
}
|
282 |
-
"""
|
283 |
-
|
284 |
-
# Create the Gradio interface
|
285 |
-
with gr.Blocks(css=custom_css, title="Linguistic Translation Analysis Tool", theme=gr.themes.Soft()) as demo:
|
286 |
-
|
287 |
-
# Header section
|
288 |
-
with gr.Row():
|
289 |
-
with gr.Column():
|
290 |
-
gr.HTML("""
|
291 |
-
<div class='linguistic-header'>
|
292 |
-
<h1 class='gradient-text' style='font-size: 2.5em; margin-bottom: 10px;'>
|
293 |
-
🔬 Siswati ⇄ English Linguistic Analysis Tool
|
294 |
-
</h1>
|
295 |
-
<p style='font-size: 1.1em; color: #475569; max-width: 800px; margin: 0 auto;'>
|
296 |
-
Advanced translation system with comprehensive linguistic analysis for researchers,
|
297 |
-
linguists, and language documentation projects. Includes morphological insights,
|
298 |
-
statistical analysis, and corpus management features.
|
299 |
-
</p>
|
300 |
-
</div>
|
301 |
-
""")
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
)
|
323 |
|
324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
with gr.Group():
|
332 |
-
gr.HTML("<h3>✨ Translation Output</h3>")
|
333 |
-
output_text = gr.Textbox(
|
334 |
-
label="Translation",
|
335 |
-
lines=6,
|
336 |
-
max_lines=12,
|
337 |
-
show_copy_button=True,
|
338 |
-
interactive=False
|
339 |
)
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
# Real-time metrics
|
348 |
-
with gr.Accordion("📈 Text Metrics", open=True):
|
349 |
-
metrics_display = gr.HTML("""
|
350 |
-
<div style='text-align: center; color: #64748b; padding: 20px;'>
|
351 |
-
<em>Translate text to see linguistic analysis</em>
|
352 |
-
</div>
|
353 |
-
""")
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
# Batch processing section
|
364 |
-
with gr.Accordion("📚 Batch Translation & Corpus Analysis", open=False):
|
365 |
-
with gr.Row():
|
366 |
-
with gr.Column():
|
367 |
-
gr.HTML("<h4>Upload text file or enter multiple lines:</h4>")
|
368 |
-
batch_input = gr.File(
|
369 |
-
label="Upload .txt file",
|
370 |
-
file_types=[".txt"],
|
371 |
-
type="filepath"
|
372 |
-
)
|
373 |
-
batch_text = gr.Textbox(
|
374 |
-
lines=8,
|
375 |
-
placeholder="Or paste multiple lines here (one per line)...",
|
376 |
-
label="Batch Text Input",
|
377 |
-
show_copy_button=True
|
378 |
-
)
|
379 |
-
batch_direction = gr.Radio(
|
380 |
-
choices=['English → Siswati', 'Siswati → English'],
|
381 |
-
label="Batch Translation Direction",
|
382 |
-
value='English → Siswati'
|
383 |
)
|
384 |
-
batch_btn = gr.Button("🔄 Process Batch", variant="primary")
|
385 |
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
)
|
392 |
-
|
393 |
-
# Research tools section
|
394 |
-
with gr.Accordion("🔬 Research & Export Tools", open=False):
|
395 |
-
with gr.Row():
|
396 |
-
with gr.Column():
|
397 |
-
gr.HTML("<h4>Translation History & Export</h4>")
|
398 |
-
history_display = gr.Dataframe(
|
399 |
-
headers=["Timestamp", "Direction", "Source", "Translation"],
|
400 |
-
label="Translation History",
|
401 |
-
interactive=False
|
402 |
-
)
|
403 |
|
404 |
with gr.Row():
|
405 |
-
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
""")
|
432 |
-
|
433 |
-
# Examples for linguists
|
434 |
-
with gr.Accordion("💡 Linguistic Examples", open=False):
|
435 |
-
examples = gr.Examples(
|
436 |
-
examples=[
|
437 |
-
["The child is playing with traditional toys.", "English → Siswati"],
|
438 |
-
["Umntfwana udlala ngetinsisimane tesintu.", "Siswati → English"],
|
439 |
-
["Agglutination demonstrates morphological complexity in Bantu languages.", "English → Siswati"],
|
440 |
-
["Lolimi lune-morphology leyinkimbinkimbi.", "Siswati → English"],
|
441 |
-
["What are the phonological features of this language?", "English → Siswati"],
|
442 |
-
["Yini tinchubo te-phonology talolimi?", "Siswati → English"],
|
443 |
-
],
|
444 |
-
inputs=[input_text, direction],
|
445 |
-
label="Click examples to analyze linguistic features:"
|
446 |
-
)
|
447 |
-
|
448 |
-
# Footer
|
449 |
-
with gr.Row():
|
450 |
-
with gr.Column():
|
451 |
-
gr.HTML("""
|
452 |
-
<div style='text-align: center; margin-top: 40px; padding: 30px; border-top: 1px solid #E5E7EB; background: #f8fafc;'>
|
453 |
-
<div style='margin-bottom: 20px;'>
|
454 |
-
<a href='https://github.com/dsfsi/en-ss-m2m100-combo' target='_blank' style='margin: 0 15px; color: #0891b2; text-decoration: none;'>📁 En→Ss Model Repository</a>
|
455 |
-
<a href='https://github.com/dsfsi/ss-en-m2m100-combo' target='_blank' style='margin: 0 15px; color: #0891b2; text-decoration: none;'>📁 Ss→En Model Repository</a>
|
456 |
-
<a href='https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform' target='_blank' style='margin: 0 15px; color: #0891b2; text-decoration: none;'>💬 Research Feedback</a>
|
457 |
-
</div>
|
458 |
-
<div style='color: #475569; font-size: 0.95em;'>
|
459 |
-
<strong>Research Team:</strong> Vukosi Marivate, Richard Lastrucci<br>
|
460 |
-
<em>Supporting African language documentation and computational linguistics research</em><br>
|
461 |
-
<small style='color: #64748b; margin-top: 10px; display: block;'>
|
462 |
-
For academic use: Please cite the original models in your publications
|
463 |
-
</small>
|
464 |
-
</div>
|
465 |
-
</div>
|
466 |
-
""")
|
467 |
-
|
468 |
-
# Event handlers
|
469 |
-
def update_char_count(text):
|
470 |
-
count = len(text) if text else 0
|
471 |
-
color = "#DC2626" if count > 2000 else "#059669" if count > 1600 else "#64748b"
|
472 |
-
return f"<span style='color: {color}; font-weight: 500;'>Character count: {count}/2000</span>"
|
473 |
-
|
474 |
-
def clear_all():
|
475 |
-
return "", "", "Character count: 0/2000", "", "", "", ""
|
476 |
-
|
477 |
-
def translate_with_analysis(text, direction):
|
478 |
-
translation, status, success, analysis = app.translate_text(text, direction)
|
479 |
-
status_html = f"<div class='{'status-success' if success else 'status-error'}'>{status}</div>"
|
480 |
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
metrics_html = f"""
|
487 |
-
<div class='comparison-grid'>
|
488 |
-
<div class='metric-card'>
|
489 |
-
<h5>📊 Source Text</h5>
|
490 |
-
<p><strong>Words:</strong> {source_metrics['word_count']}</p>
|
491 |
-
<p><strong>Characters:</strong> {source_metrics['character_count']}</p>
|
492 |
-
<p><strong>Sentences:</strong> {source_metrics['sentence_count']}</p>
|
493 |
-
<p><strong>Lexical Diversity:</strong> {source_metrics['lexical_diversity']:.3f}</p>
|
494 |
-
</div>
|
495 |
-
<div class='metric-card' style='border-left: 4px solid #059669;'>
|
496 |
-
<h5>📊 Translation</h5>
|
497 |
-
<p><strong>Words:</strong> {target_metrics['word_count']}</p>
|
498 |
-
<p><strong>Characters:</strong> {target_metrics['character_count']}</p>
|
499 |
-
<p><strong>Sentences:</strong> {target_metrics['sentence_count']}</p>
|
500 |
-
<p><strong>Lexical Diversity:</strong> {target_metrics['lexical_diversity']:.3f}</p>
|
501 |
-
</div>
|
502 |
-
</div>
|
503 |
-
"""
|
504 |
-
|
505 |
-
# Language features
|
506 |
-
features_html = ""
|
507 |
-
if 'potential_agglutination' in source_metrics:
|
508 |
-
features_html = f"""
|
509 |
-
<div class='analysis-metric'>
|
510 |
-
<h5>🔍 Siswati Features Detected:</h5>
|
511 |
-
<p><strong>Potential agglutinated words:</strong> {source_metrics['potential_agglutination']}</p>
|
512 |
-
<p><strong>Click consonants (c,q,x):</strong> {source_metrics['click_consonants']}</p>
|
513 |
-
<p><strong>Tone markers:</strong> {source_metrics['tone_markers']}</p>
|
514 |
-
</div>
|
515 |
-
"""
|
516 |
-
|
517 |
-
# Translation ratios
|
518 |
-
ratios_html = f"""
|
519 |
-
<div class='analysis-metric'>
|
520 |
-
<h5>⚖️ Translation Ratios:</h5>
|
521 |
-
<p><strong>Word ratio:</strong> {analysis['word_ratio']:.3f}</p>
|
522 |
-
<p><strong>Character ratio:</strong> {analysis['translation_ratio']:.3f}</p>
|
523 |
-
<p><strong>Processing time:</strong> {analysis['processing_time']:.3f}s</p>
|
524 |
-
</div>
|
525 |
-
"""
|
526 |
-
|
527 |
-
return translation, status_html, metrics_html, features_html, ratios_html
|
528 |
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
texts = []
|
533 |
|
534 |
-
|
535 |
-
try:
|
536 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
537 |
-
texts = [line.strip() for line in f.readlines() if line.strip()]
|
538 |
-
except Exception as e:
|
539 |
-
return [[f"Error reading file: {str(e)}", "", "", "", ""]]
|
540 |
-
elif batch_text:
|
541 |
-
texts = [line.strip() for line in batch_text.split('\n') if line.strip()]
|
542 |
|
543 |
-
|
544 |
-
return [["No text provided", "", "", "", ""]]
|
545 |
|
546 |
-
|
|
|
547 |
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
display_data.append([
|
559 |
-
r['index'],
|
560 |
-
r['source'][:50] + "..." if len(r['source']) > 50 else r['source'],
|
561 |
-
r['translation'][:50] + "..." if len(r['translation']) > 50 else r['translation'],
|
562 |
-
word_ratio,
|
563 |
-
char_ratio
|
564 |
-
])
|
565 |
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
entry['source_text'][:50] + "..." if len(entry['source_text']) > 50 else entry['source_text'],
|
576 |
-
entry['translated_text'][:50] + "..." if len(entry['translated_text']) > 50 else entry['translated_text']
|
577 |
-
] for entry in app.translation_history[-20:]] # Show last 20
|
578 |
-
|
579 |
-
def export_csv():
|
580 |
-
csv_content = app.export_history_csv()
|
581 |
-
if csv_content:
|
582 |
-
filename = f"translation_history_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
|
583 |
-
return gr.File.update(value=csv_content, visible=True, label=f"📊 {filename}")
|
584 |
-
return gr.File.update(visible=False)
|
585 |
-
|
586 |
-
def clear_history():
|
587 |
-
app.translation_history = []
|
588 |
-
return []
|
589 |
-
|
590 |
-
# Wire up events
|
591 |
-
input_text.change(fn=update_char_count, inputs=input_text, outputs=char_count)
|
592 |
-
|
593 |
-
translate_btn.click(
|
594 |
-
fn=translate_with_analysis,
|
595 |
-
inputs=[input_text, direction],
|
596 |
-
outputs=[output_text, status_display, metrics_display, features_display, ratios_display]
|
597 |
-
)
|
598 |
-
|
599 |
-
clear_btn.click(
|
600 |
-
fn=clear_all,
|
601 |
-
outputs=[input_text, output_text, char_count, status_display, metrics_display, features_display, ratios_display]
|
602 |
-
)
|
603 |
-
|
604 |
-
batch_btn.click(
|
605 |
-
fn=process_batch,
|
606 |
-
inputs=[batch_input, batch_text, batch_direction],
|
607 |
-
outputs=batch_results
|
608 |
-
)
|
609 |
-
|
610 |
-
refresh_history_btn.click(fn=get_history, outputs=history_display)
|
611 |
-
export_csv_btn.click(fn=export_csv, outputs=csv_download)
|
612 |
-
clear_history_btn.click(fn=clear_history, outputs=history_display)
|
613 |
|
614 |
-
|
615 |
-
input_text.submit(
|
616 |
-
fn=translate_with_analysis,
|
617 |
-
inputs=[input_text, direction],
|
618 |
-
outputs=[output_text, status_display, metrics_display, features_display, ratios_display]
|
619 |
-
)
|
620 |
|
|
|
621 |
if __name__ == "__main__":
|
|
|
622 |
demo.launch(
|
|
|
623 |
server_name="0.0.0.0",
|
624 |
server_port=7860,
|
625 |
-
|
626 |
-
debug=True
|
627 |
)
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
4 |
+
import pandas as pd
|
5 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import re
|
7 |
+
from datetime import datetime
|
8 |
+
import json
|
9 |
+
|
10 |
+
# Model loading and caching
|
11 |
+
@gr.cache_model
|
12 |
+
def load_translation_models():
|
13 |
+
"""Load and cache both translation models"""
|
14 |
+
try:
|
15 |
+
# English to Siswati
|
16 |
+
en_ss_tokenizer = AutoTokenizer.from_pretrained("dsfsi/en-ss-m2m100-combo")
|
17 |
+
en_ss_model = AutoModelForSeq2SeqLM.from_pretrained("dsfsi/en-ss-m2m100-combo")
|
18 |
+
en_ss_pipeline = pipeline("translation", model=en_ss_model, tokenizer=en_ss_tokenizer)
|
19 |
+
|
20 |
+
# Siswati to English
|
21 |
+
ss_en_tokenizer = AutoTokenizer.from_pretrained("dsfsi/ss-en-m2m100-combo")
|
22 |
+
ss_en_model = AutoModelForSeq2SeqLM.from_pretrained("dsfsi/ss-en-m2m100-combo")
|
23 |
+
ss_en_pipeline = pipeline("translation", model=ss_en_model, tokenizer=ss_en_tokenizer)
|
24 |
+
|
25 |
+
return en_ss_pipeline, ss_en_pipeline
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error loading models: {e}")
|
28 |
+
return None, None
|
29 |
|
30 |
+
# Load models at startup
|
31 |
+
en_ss_translator, ss_en_translator = load_translation_models()
|
|
|
32 |
|
33 |
+
def analyze_siswati_features(text):
|
34 |
+
"""Analyze Siswati-specific linguistic features"""
|
35 |
+
features = {}
|
|
|
|
|
36 |
|
37 |
+
# Click consonants (c, q, x sounds)
|
38 |
+
click_pattern = r'[cqx]'
|
39 |
+
features['click_consonants'] = len(re.findall(click_pattern, text.lower()))
|
40 |
+
|
41 |
+
# Tone markers (acute and grave accents)
|
42 |
+
tone_pattern = r'[áàéèíìóòúù]'
|
43 |
+
features['tone_markers'] = len(re.findall(tone_pattern, text.lower()))
|
44 |
+
|
45 |
+
# Potential agglutination (words longer than 10 characters)
|
46 |
+
words = text.split()
|
47 |
+
long_words = [word for word in words if len(word) > 10]
|
48 |
+
features['potential_agglutination'] = len(long_words)
|
49 |
+
features['long_words'] = long_words[:5] # Show first 5 examples
|
50 |
+
|
51 |
+
return features
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
def calculate_linguistic_metrics(text):
|
54 |
+
"""Calculate comprehensive linguistic metrics"""
|
55 |
+
if not text.strip():
|
56 |
+
return {}
|
57 |
+
|
58 |
+
# Basic counts
|
59 |
+
char_count = len(text)
|
60 |
+
word_count = len(text.split())
|
61 |
+
sentence_count = len([s for s in re.split(r'[.!?]+', text) if s.strip()])
|
62 |
+
|
63 |
+
# Advanced metrics
|
64 |
+
words = text.split()
|
65 |
+
unique_words = set(words)
|
66 |
+
lexical_diversity = len(unique_words) / word_count if word_count > 0 else 0
|
67 |
+
avg_word_length = sum(len(word) for word in words) / word_count if word_count > 0 else 0
|
68 |
+
|
69 |
+
return {
|
70 |
+
'char_count': char_count,
|
71 |
+
'word_count': word_count,
|
72 |
+
'sentence_count': sentence_count,
|
73 |
+
'lexical_diversity': lexical_diversity,
|
74 |
+
'avg_word_length': avg_word_length,
|
75 |
+
'unique_words': len(unique_words)
|
76 |
+
}
|
|
|
77 |
|
78 |
+
def translate_text(text, direction):
|
79 |
+
"""Main translation function with linguistic analysis"""
|
80 |
+
if not text.strip():
|
81 |
+
return "Please enter text to translate.", "", ""
|
82 |
+
|
83 |
+
start_time = time.time()
|
84 |
+
|
85 |
+
try:
|
86 |
+
# Perform translation
|
87 |
+
if direction == "English → Siswati":
|
88 |
+
if en_ss_translator is None:
|
89 |
+
return "Translation model not loaded. Please try again.", "", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
result = en_ss_translator(text, max_length=512)
|
92 |
+
translated_text = result[0]['translation_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Analyze source (English) and target (Siswati)
|
95 |
+
source_metrics = calculate_linguistic_metrics(text)
|
96 |
+
target_metrics = calculate_linguistic_metrics(translated_text)
|
97 |
+
siswati_features = analyze_siswati_features(translated_text)
|
98 |
|
99 |
+
else: # Siswati → English
|
100 |
+
if ss_en_translator is None:
|
101 |
+
return "Translation model not loaded. Please try again.", "", ""
|
102 |
|
103 |
+
result = ss_en_translator(text, max_length=512)
|
104 |
+
translated_text = result[0]['translation_text']
|
105 |
|
106 |
+
# Analyze source (Siswati) and target (English)
|
107 |
+
source_metrics = calculate_linguistic_metrics(text)
|
108 |
+
target_metrics = calculate_linguistic_metrics(translated_text)
|
109 |
+
siswati_features = analyze_siswati_features(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
processing_time = time.time() - start_time
|
|
|
112 |
|
113 |
+
# Create linguistic analysis report
|
114 |
+
analysis_report = create_analysis_report(
|
115 |
+
source_metrics, target_metrics, siswati_features,
|
116 |
+
processing_time, direction
|
117 |
+
)
|
|
|
|
|
|
|
118 |
|
119 |
+
# Create metrics table
|
120 |
+
metrics_table = create_metrics_table(source_metrics, target_metrics, processing_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
return translated_text, analysis_report, metrics_table
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
return f"Translation error: {str(e)}", "", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
def create_analysis_report(source_metrics, target_metrics, siswati_features, processing_time, direction):
|
128 |
+
"""Create a comprehensive linguistic analysis report"""
|
129 |
+
report = f"""
|
130 |
+
## 📊 Linguistic Analysis Report
|
|
|
|
|
|
|
131 |
|
132 |
+
### Translation Details
|
133 |
+
- **Direction**: {direction}
|
134 |
+
- **Processing Time**: {processing_time:.2f} seconds
|
135 |
+
- **Timestamp**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
|
|
|
|
|
|
136 |
|
137 |
+
### Text Complexity Metrics
|
138 |
+
| Metric | Source | Target | Ratio |
|
139 |
+
|--------|--------|--------|-------|
|
140 |
+
| Word Count | {source_metrics.get('word_count', 0)} | {target_metrics.get('word_count', 0)} | {target_metrics.get('word_count', 0) / max(source_metrics.get('word_count', 1), 1):.2f} |
|
141 |
+
| Character Count | {source_metrics.get('char_count', 0)} | {target_metrics.get('char_count', 0)} | {target_metrics.get('char_count', 0) / max(source_metrics.get('char_count', 1), 1):.2f} |
|
142 |
+
| Sentence Count | {source_metrics.get('sentence_count', 0)} | {target_metrics.get('sentence_count', 0)} | {target_metrics.get('sentence_count', 0) / max(source_metrics.get('sentence_count', 1), 1):.2f} |
|
143 |
+
| Avg Word Length | {source_metrics.get('avg_word_length', 0):.1f} | {target_metrics.get('avg_word_length', 0):.1f} | {target_metrics.get('avg_word_length', 0) / max(source_metrics.get('avg_word_length', 1), 1):.2f} |
|
144 |
+
| Lexical Diversity | {source_metrics.get('lexical_diversity', 0):.3f} | {target_metrics.get('lexical_diversity', 0):.3f} | {target_metrics.get('lexical_diversity', 0) / max(source_metrics.get('lexical_diversity', 0.001), 0.001):.2f} |
|
145 |
|
146 |
+
### Siswati-Specific Features
|
147 |
+
- **Click Consonants**: {siswati_features.get('click_consonants', 0)} detected
|
148 |
+
- **Tone Markers**: {siswati_features.get('tone_markers', 0)} detected
|
149 |
+
- **Potential Agglutination**: {siswati_features.get('potential_agglutination', 0)} words longer than 10 characters
|
150 |
+
"""
|
151 |
+
|
152 |
+
if siswati_features.get('long_words'):
|
153 |
+
report += f"- **Long Word Examples**: {', '.join(siswati_features['long_words'])}\n"
|
154 |
+
|
155 |
+
return report
|
156 |
|
157 |
+
def create_metrics_table(source_metrics, target_metrics, processing_time):
|
158 |
+
"""Create a DataFrame for metrics visualization"""
|
159 |
+
data = {
|
160 |
+
'Metric': ['Words', 'Characters', 'Sentences', 'Unique Words', 'Avg Word Length', 'Lexical Diversity'],
|
161 |
+
'Source Text': [
|
162 |
+
source_metrics.get('word_count', 0),
|
163 |
+
source_metrics.get('char_count', 0),
|
164 |
+
source_metrics.get('sentence_count', 0),
|
165 |
+
source_metrics.get('unique_words', 0),
|
166 |
+
f"{source_metrics.get('avg_word_length', 0):.1f}",
|
167 |
+
f"{source_metrics.get('lexical_diversity', 0):.3f}"
|
168 |
+
],
|
169 |
+
'Target Text': [
|
170 |
+
target_metrics.get('word_count', 0),
|
171 |
+
target_metrics.get('char_count', 0),
|
172 |
+
target_metrics.get('sentence_count', 0),
|
173 |
+
target_metrics.get('unique_words', 0),
|
174 |
+
f"{target_metrics.get('avg_word_length', 0):.1f}",
|
175 |
+
f"{target_metrics.get('lexical_diversity', 0):.3f}"
|
176 |
+
]
|
177 |
+
}
|
178 |
+
|
179 |
+
return pd.DataFrame(data)
|
180 |
|
181 |
+
def batch_translate(file_obj, direction):
|
182 |
+
"""Process batch translations from uploaded file"""
|
183 |
+
if file_obj is None:
|
184 |
+
return "Please upload a file.", ""
|
185 |
+
|
186 |
+
try:
|
187 |
+
# Read file content
|
188 |
+
if file_obj.name.endswith('.csv'):
|
189 |
+
df = pd.read_csv(file_obj.name)
|
190 |
+
# Assume first column contains text to translate
|
191 |
+
texts = df.iloc[:, 0].dropna().astype(str).tolist()
|
192 |
+
else:
|
193 |
+
# Plain text file
|
194 |
+
with open(file_obj.name, 'r', encoding='utf-8') as f:
|
195 |
+
content = f.read()
|
196 |
+
texts = [line.strip() for line in content.split('\n') if line.strip()]
|
197 |
+
|
198 |
+
# Limit batch size for demo
|
199 |
+
texts = texts[:10] # Process first 10 entries
|
200 |
+
|
201 |
+
results = []
|
202 |
+
for i, text in enumerate(texts):
|
203 |
+
translated, _, _ = translate_text(text, direction)
|
204 |
+
results.append({
|
205 |
+
'Original': text[:100] + '...' if len(text) > 100 else text,
|
206 |
+
'Translation': translated[:100] + '...' if len(translated) > 100 else translated,
|
207 |
+
'Index': i + 1
|
208 |
+
})
|
209 |
+
|
210 |
+
results_df = pd.DataFrame(results)
|
211 |
+
summary = f"Processed {len(results)} texts successfully."
|
212 |
+
|
213 |
+
return summary, results_df
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
return f"Error processing file: {str(e)}", ""
|
217 |
|
218 |
+
# Define example texts
|
219 |
+
TRANSLATION_EXAMPLES = [
|
220 |
+
["English → Siswati", "Hello, how are you today?"],
|
221 |
+
["English → Siswati", "The weather is beautiful this morning."],
|
222 |
+
["English → Siswati", "I am learning Siswati language."],
|
223 |
+
["English → Siswati", "Thank you for your help."],
|
224 |
+
["Siswati → English", "Sawubona, unjani namuhla?"],
|
225 |
+
["Siswati → English", "Siyabonga ngekusita kwakho."],
|
226 |
+
["Siswati → English", "Lolu luhle kakhulu."],
|
227 |
+
["Siswati → English", "Ngiyakuthanda."]
|
228 |
+
]
|
229 |
|
230 |
+
def create_gradio_interface():
|
231 |
+
"""Create the main Gradio interface"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
+
with gr.Blocks(
|
234 |
+
title="🔬 Siswati-English Linguistic Translation Tool",
|
235 |
+
theme=gr.themes.Soft(),
|
236 |
+
css="""
|
237 |
+
.gradio-container {font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;}
|
238 |
+
.main-header {text-align: center; padding: 2rem 0;}
|
239 |
+
.metric-table {font-size: 0.9em;}
|
240 |
+
.feature-highlight {background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white; padding: 1rem; border-radius: 10px; margin: 1rem 0;}
|
241 |
+
"""
|
242 |
+
) as demo:
|
243 |
+
|
244 |
+
# Header Section
|
245 |
+
gr.HTML("""
|
246 |
+
<div class="main-header">
|
247 |
+
<img src="https://www.dsfsi.co.za/images/logo_transparent_expanded.png" width="400" alt="DSFSI Logo" style="margin-bottom: 1rem;">
|
248 |
+
<h1>🔬 Siswati-English Linguistic Translation Tool</h1>
|
249 |
+
<p style="font-size: 1.1em; color: #666; max-width: 800px; margin: 0 auto;">
|
250 |
+
Advanced AI-powered translation system with comprehensive linguistic analysis features,
|
251 |
+
designed specifically for linguists, researchers, and language documentation projects.
|
252 |
+
</p>
|
253 |
+
</div>
|
254 |
+
""")
|
255 |
+
|
256 |
+
# Main Content Tabs
|
257 |
+
with gr.Tabs():
|
258 |
+
|
259 |
+
# Single Translation Tab
|
260 |
+
with gr.Tab("🌐 Translation & Analysis"):
|
261 |
+
gr.Markdown("""
|
262 |
+
### Real-time Translation with Linguistic Analysis
|
263 |
+
Translate between English and Siswati while getting detailed linguistic insights including morphological complexity, lexical diversity, and Siswati-specific features.
|
264 |
+
""")
|
265 |
+
|
266 |
+
with gr.Row():
|
267 |
+
with gr.Column(scale=1):
|
268 |
+
direction = gr.Dropdown(
|
269 |
+
choices=["English → Siswati", "Siswati → English"],
|
270 |
+
label="Translation Direction",
|
271 |
+
value="English → Siswati"
|
272 |
+
)
|
273 |
+
|
274 |
+
input_text = gr.Textbox(
|
275 |
+
label="Input Text",
|
276 |
+
placeholder="Enter text to translate...",
|
277 |
+
lines=4
|
278 |
+
)
|
279 |
+
|
280 |
+
translate_btn = gr.Button("🔄 Translate & Analyze", variant="primary", size="lg")
|
281 |
+
|
282 |
+
with gr.Column(scale=1):
|
283 |
+
output_text = gr.Textbox(
|
284 |
+
label="Translation",
|
285 |
+
lines=4,
|
286 |
+
interactive=False
|
287 |
+
)
|
288 |
+
|
289 |
+
# Quick metrics display
|
290 |
+
with gr.Row():
|
291 |
+
processing_info = gr.Textbox(
|
292 |
+
label="Processing Info",
|
293 |
+
lines=1,
|
294 |
+
interactive=False
|
295 |
+
)
|
296 |
|
297 |
+
# Examples Section
|
298 |
+
gr.Markdown("### 📚 Example Translations")
|
299 |
+
gr.Examples(
|
300 |
+
examples=TRANSLATION_EXAMPLES,
|
301 |
+
inputs=[direction, input_text],
|
302 |
+
label="Click an example to try it:"
|
303 |
)
|
304 |
|
305 |
+
# Analysis Results
|
306 |
+
with gr.Accordion("📊 Detailed Linguistic Analysis", open=False):
|
307 |
+
analysis_output = gr.Markdown(label="Analysis Report")
|
308 |
+
|
309 |
+
with gr.Accordion("📈 Metrics Table", open=False):
|
310 |
+
metrics_table = gr.Dataframe(
|
311 |
+
label="Comparative Metrics",
|
312 |
+
headers=["Metric", "Source Text", "Target Text"],
|
313 |
+
interactive=False
|
314 |
+
)
|
315 |
|
316 |
+
# Connect translation function
|
317 |
+
translate_btn.click(
|
318 |
+
fn=translate_text,
|
319 |
+
inputs=[input_text, direction],
|
320 |
+
outputs=[output_text, analysis_output, metrics_table]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
)
|
322 |
+
|
323 |
+
# Batch Processing Tab
|
324 |
+
with gr.Tab("📁 Batch Processing"):
|
325 |
+
gr.Markdown("""
|
326 |
+
### Corpus Analysis & Batch Translation
|
327 |
+
Upload text files or CSV files for batch translation and corpus analysis. Perfect for linguistic research and documentation projects.
|
328 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
+
with gr.Row():
|
331 |
+
with gr.Column():
|
332 |
+
batch_direction = gr.Dropdown(
|
333 |
+
choices=["English → Siswati", "Siswati → English"],
|
334 |
+
label="Translation Direction",
|
335 |
+
value="English → Siswati"
|
336 |
+
)
|
337 |
+
|
338 |
+
file_upload = gr.File(
|
339 |
+
label="Upload File",
|
340 |
+
file_types=[".txt", ".csv"],
|
341 |
+
type="filepath"
|
342 |
+
)
|
343 |
+
|
344 |
+
batch_btn = gr.Button("🔄 Process Batch", variant="primary")
|
345 |
+
|
346 |
+
gr.Markdown("""
|
347 |
+
**Supported formats:**
|
348 |
+
- `.txt` files: One text per line
|
349 |
+
- `.csv` files: Text in first column
|
350 |
+
- **Limit**: First 10 entries for demo
|
351 |
+
""")
|
352 |
+
|
353 |
+
with gr.Column():
|
354 |
+
batch_summary = gr.Textbox(
|
355 |
+
label="Processing Summary",
|
356 |
+
lines=3,
|
357 |
+
interactive=False
|
358 |
+
)
|
359 |
+
|
360 |
+
batch_results = gr.Dataframe(
|
361 |
+
label="Translation Results",
|
362 |
+
interactive=False,
|
363 |
+
wrap=True
|
364 |
+
)
|
365 |
|
366 |
+
batch_btn.click(
|
367 |
+
fn=batch_translate,
|
368 |
+
inputs=[file_upload, batch_direction],
|
369 |
+
outputs=[batch_summary, batch_results]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
)
|
|
|
371 |
|
372 |
+
# Research Tools Tab
|
373 |
+
with gr.Tab("🔬 Research Tools"):
|
374 |
+
gr.Markdown("""
|
375 |
+
### Advanced Linguistic Analysis Tools
|
376 |
+
Explore detailed linguistic features and export research data.
|
377 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
with gr.Row():
|
380 |
+
with gr.Column():
|
381 |
+
research_text = gr.Textbox(
|
382 |
+
label="Text for Analysis",
|
383 |
+
lines=6,
|
384 |
+
placeholder="Enter Siswati or English text for detailed analysis..."
|
385 |
+
)
|
386 |
+
|
387 |
+
analyze_btn = gr.Button("🔍 Analyze Text", variant="primary")
|
388 |
+
|
389 |
+
with gr.Column():
|
390 |
+
research_output = gr.JSON(
|
391 |
+
label="Detailed Analysis Results"
|
392 |
+
)
|
393 |
|
394 |
+
def detailed_analysis(text):
|
395 |
+
"""Perform detailed linguistic analysis"""
|
396 |
+
if not text.strip():
|
397 |
+
return {}
|
398 |
+
|
399 |
+
metrics = calculate_linguistic_metrics(text)
|
400 |
+
siswati_features = analyze_siswati_features(text)
|
401 |
+
|
402 |
+
return {
|
403 |
+
"basic_metrics": metrics,
|
404 |
+
"siswati_features": siswati_features,
|
405 |
+
"text_preview": text[:100] + "..." if len(text) > 100 else text,
|
406 |
+
"analysis_timestamp": datetime.now().isoformat()
|
407 |
+
}
|
408 |
+
|
409 |
+
analyze_btn.click(
|
410 |
+
fn=detailed_analysis,
|
411 |
+
inputs=research_text,
|
412 |
+
outputs=research_output
|
413 |
+
)
|
414 |
+
|
415 |
+
# Language Information
|
416 |
+
gr.Markdown("""
|
417 |
+
### 🗣️ About Siswati Language
|
418 |
+
|
419 |
+
**Siswati** (also known as **Swati** or **Swazi**) is a Bantu language spoken by approximately 2.3 million people, primarily in:
|
420 |
+
- 🇸🇿 **Eswatini** (Kingdom of Eswatini) - Official language
|
421 |
+
- 🇿🇦 **South Africa** - One of 11 official languages
|
422 |
+
|
423 |
+
**Key Linguistic Features:**
|
424 |
+
- **Language Family**: Niger-Congo → Bantu → Southeast Bantu
|
425 |
+
- **Script**: Latin alphabet
|
426 |
+
- **Characteristics**: Agglutinative morphology, click consonants, tonal
|
427 |
+
- **ISO Code**: ss (ISO 639-1), ssw (ISO 639-3)
|
428 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
+
# Footer Section
|
431 |
+
gr.Markdown("""
|
432 |
+
---
|
433 |
+
### 📚 Model Information & Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
+
**Models Used:**
|
436 |
+
- **English → Siswati**: [`dsfsi/en-ss-m2m100-combo`](https://huggingface.co/dsfsi/en-ss-m2m100-combo)
|
437 |
+
- **Siswati → English**: [`dsfsi/ss-en-m2m100-combo`](https://huggingface.co/dsfsi/ss-en-m2m100-combo)
|
|
|
438 |
|
439 |
+
Both models are based on Meta's M2M100 architecture, fine-tuned specifically for Siswati-English translation pairs by the **Data Science for Social Impact Research Group**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
|
441 |
+
**Training Data**: Models trained on the Vuk'uzenzele and ZA-gov-multilingual South African corpora.
|
|
|
442 |
|
443 |
+
### 🙏 Acknowledgments
|
444 |
+
We thank **Thapelo Sindanie** and **Unarine Netshifhefhe** for their contributions to this work.
|
445 |
|
446 |
+
### 📖 Citation
|
447 |
+
```bibtex
|
448 |
+
@inproceedings{lastrucci2023preparing,
|
449 |
+
title={Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora},
|
450 |
+
author={Lastrucci, Richard and Rajab, Jenalea and Shingange, Matimba and Njini, Daniel and Marivate, Vukosi},
|
451 |
+
booktitle={Proceedings of the Fourth workshop on Resources for African Indigenous Languages (RAIL 2023)},
|
452 |
+
pages={18--25},
|
453 |
+
year={2023}
|
454 |
+
}
|
455 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
456 |
|
457 |
+
**Links**:
|
458 |
+
- [DSFSI](https://www.dsfsi.co.za/)
|
459 |
+
- [En→Ss Model](https://huggingface.co/dsfsi/en-ss-m2m100-combo) | [Ss→En Model](https://huggingface.co/dsfsi/ss-en-m2m100-combo)
|
460 |
+
- [Vuk'uzenzele Data](https://github.com/dsfsi/vukuzenzele-nlp) | [ZA-gov Data](https://github.com/dsfsi/gov-za-multilingual)
|
461 |
+
- [Research Feedback](https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/viewform)
|
462 |
|
463 |
+
---
|
464 |
+
**Built with ❤️ for the African NLP community**
|
465 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
+
# Create and launch the interface
|
470 |
if __name__ == "__main__":
|
471 |
+
demo = create_gradio_interface()
|
472 |
demo.launch(
|
473 |
+
share=True,
|
474 |
server_name="0.0.0.0",
|
475 |
server_port=7860,
|
476 |
+
show_error=True
|
|
|
477 |
)
|