Spaces:
Sleeping
Sleeping
Updaed to multi demo
Browse files- app.py +318 -66
- logo_transparent_small.png +0 -0
app.py
CHANGED
@@ -1,52 +1,84 @@
|
|
1 |
-
# Refactored Streamlit App for Setswana NER using HuggingFace Models
|
2 |
-
|
3 |
import streamlit as st
|
4 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import pandas as pd
|
6 |
import spacy
|
|
|
|
|
7 |
|
8 |
# -------------------- PAGE CONFIG --------------------
|
9 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# --------------------
|
12 |
-
st.
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
input_method = st.radio("Select Input Method", ['Example Text', 'Write Text', 'Upload CSV'])
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
# -------------------- MODEL LOADING --------------------
|
42 |
@st.cache_resource
|
43 |
-
def
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
45 |
-
model =
|
46 |
-
return pipeline("
|
47 |
|
48 |
-
# --------------------
|
49 |
def merge_entities(output):
|
|
|
50 |
merged = []
|
51 |
for i, ent in enumerate(output):
|
52 |
if i > 0 and ent["start"] == output[i-1]["end"] and ent["entity_group"] == output[i-1]["entity_group"]:
|
@@ -56,40 +88,256 @@ def merge_entities(output):
|
|
56 |
merged.append(ent)
|
57 |
return merged
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
else:
|
82 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
# --------------------
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
```bibtex
|
94 |
@inproceedings{marivate2023puoberta,
|
95 |
title = {PuoBERTa: Training and evaluation of a curated language model for Setswana},
|
@@ -101,4 +349,8 @@ Vukosi Marivate, Moseli Mots'Oehli, Valencia Wagner, Richard Lastrucci, Isheanes
|
|
101 |
preprint_url = {https://arxiv.org/abs/2310.09141},
|
102 |
dataset_url = {https://github.com/dsfsi/PuoBERTa},
|
103 |
software_url = {https://huggingface.co/dsfsi/PuoBERTa}
|
104 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import (
|
3 |
+
pipeline,
|
4 |
+
AutoModelForTokenClassification,
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForSequenceClassification,
|
7 |
+
AutoModelForMaskedLM
|
8 |
+
)
|
9 |
import pandas as pd
|
10 |
import spacy
|
11 |
+
import csv
|
12 |
+
from io import StringIO
|
13 |
|
14 |
# -------------------- PAGE CONFIG --------------------
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="PuoBERTa Multi-Task Demo",
|
17 |
+
page_icon="🔤",
|
18 |
+
layout="wide"
|
19 |
+
)
|
20 |
|
21 |
+
# -------------------- HEADER --------------------
|
22 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
23 |
+
with col2:
|
24 |
+
try:
|
25 |
+
st.image("logo_transparent_small.png", width=300)
|
26 |
+
except:
|
27 |
+
st.write("🔤 PuoBERTa")
|
28 |
|
29 |
+
st.title("PuoBERTa Multi-Task Demo")
|
30 |
+
st.markdown("""
|
31 |
+
A comprehensive demo for Setswana language models including:
|
32 |
+
- **Mask Filling**: Fill in missing words in sentences
|
33 |
+
- **POS Tagging**: Identify parts of speech
|
34 |
+
- **Named Entity Recognition**: Extract entities like people, places, organizations
|
35 |
+
- **News Classification**: Classify news articles by category
|
36 |
+
""")
|
37 |
|
38 |
+
st.markdown("---")
|
|
|
39 |
|
40 |
+
# -------------------- SIDEBAR --------------------
|
41 |
+
st.sidebar.header("Model Information")
|
42 |
+
st.sidebar.markdown("""
|
43 |
+
**Authors**: Vukosi Marivate, Moseli Mots'Oehli, Valencia Wagner, Richard Lastrucci, Isheanesu Dzingirai
|
44 |
+
|
45 |
+
**Paper**: [PuoBERTa: Training and evaluation of a curated language model for Setswana](https://arxiv.org/abs/2310.09141)
|
46 |
+
|
47 |
+
**Models Used**:
|
48 |
+
- dsfsi/PuoBERTa (Mask Filling)
|
49 |
+
- dsfsi/PuoBERTa-POS (POS Tagging)
|
50 |
+
- dsfsi/PuoBERTa-NER (Named Entity Recognition)
|
51 |
+
- dsfsi/PuoBERTa-News (News Classification)
|
52 |
+
""")
|
53 |
+
|
54 |
+
# -------------------- CACHING FUNCTIONS --------------------
|
55 |
+
@st.cache_resource
|
56 |
+
def load_mask_filling_model():
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa")
|
58 |
+
model = AutoModelForMaskedLM.from_pretrained("dsfsi/PuoBERTa")
|
59 |
+
return pipeline("fill-mask", model=model, tokenizer=tokenizer, top_k=5)
|
60 |
+
|
61 |
+
@st.cache_resource
|
62 |
+
def load_pos_model():
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-POS")
|
64 |
+
model = AutoModelForTokenClassification.from_pretrained("dsfsi/PuoBERTa-POS")
|
65 |
+
return pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
66 |
|
67 |
+
@st.cache_resource
|
68 |
+
def load_ner_model():
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-NER")
|
70 |
+
model = AutoModelForTokenClassification.from_pretrained("dsfsi/PuoBERTa-NER")
|
71 |
+
return pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
72 |
|
|
|
73 |
@st.cache_resource
|
74 |
+
def load_news_classification_model():
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-News")
|
76 |
+
model = AutoModelForSequenceClassification.from_pretrained("dsfsi/PuoBERTa-News")
|
77 |
+
return pipeline("text-classification", model=model, tokenizer=tokenizer, return_all_scores=True)
|
78 |
|
79 |
+
# -------------------- UTILITY FUNCTIONS --------------------
|
80 |
def merge_entities(output):
|
81 |
+
"""Merge consecutive entities of the same type"""
|
82 |
merged = []
|
83 |
for i, ent in enumerate(output):
|
84 |
if i > 0 and ent["start"] == output[i-1]["end"] and ent["entity_group"] == output[i-1]["entity_group"]:
|
|
|
88 |
merged.append(ent)
|
89 |
return merged
|
90 |
|
91 |
+
def create_spacy_display(text, entities, task_type="ner"):
|
92 |
+
"""Create spaCy-style display for entities"""
|
93 |
+
spacy_display = {"text": text, "ents": [], "title": None}
|
94 |
+
|
95 |
+
for ent in entities:
|
96 |
+
label = ent["entity_group"]
|
97 |
+
if task_type == "ner" and label == "PER":
|
98 |
+
label = "PERSON"
|
99 |
+
spacy_display["ents"].append({
|
100 |
+
"start": ent["start"],
|
101 |
+
"end": ent["end"],
|
102 |
+
"label": label
|
103 |
+
})
|
104 |
+
|
105 |
+
# Define colors for different entity types
|
106 |
+
colors = {
|
107 |
+
# POS colors
|
108 |
+
"PRON": "#FF9999",
|
109 |
+
"VERB": "#99FF99",
|
110 |
+
"DET": "#9999FF",
|
111 |
+
"PROPN": "#FFFF99",
|
112 |
+
"CCONJ": "#FFCC99",
|
113 |
+
"PUNCT": "#CCCCCC",
|
114 |
+
"NUM": "#FFCCFF",
|
115 |
+
"NOUN": "#FFB366",
|
116 |
+
"ADJ": "#B366FF",
|
117 |
+
"ADP": "#66FFB3",
|
118 |
+
# NER colors
|
119 |
+
"PERSON": "#85DCDF",
|
120 |
+
"PER": "#85DCDF",
|
121 |
+
"LOC": "#DF85DC",
|
122 |
+
"ORG": "#DCDF85",
|
123 |
+
"MISC": "#85ABDF"
|
124 |
+
}
|
125 |
+
|
126 |
+
try:
|
127 |
+
html = spacy.displacy.render(spacy_display, style="ent", manual=True, minify=True,
|
128 |
+
options={"colors": colors})
|
129 |
+
styled_html = f"""
|
130 |
+
<style>mark.entity {{ display: inline-block; }}</style>
|
131 |
+
<div style='overflow-x:auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;'>
|
132 |
+
{html}
|
133 |
+
</div>
|
134 |
+
"""
|
135 |
+
return styled_html
|
136 |
+
except:
|
137 |
+
return "<p>Error rendering visualization</p>"
|
138 |
+
|
139 |
+
def get_input_text(tab_name, examples):
|
140 |
+
"""Get input text based on selected method"""
|
141 |
+
input_method = st.radio(
|
142 |
+
"Select Input Method",
|
143 |
+
['Example Text', 'Write Text', 'Upload File'],
|
144 |
+
key=f"{tab_name}_input_method"
|
145 |
+
)
|
146 |
+
|
147 |
+
if input_method == 'Example Text':
|
148 |
+
return st.selectbox("Example Sentences", examples, key=f"{tab_name}_examples")
|
149 |
+
elif input_method == 'Write Text':
|
150 |
+
return st.text_area("Enter text", height=100, key=f"{tab_name}_text_input")
|
151 |
+
elif input_method == 'Upload File':
|
152 |
+
uploaded = st.file_uploader("Upload text or CSV file", type=["txt", "csv"], key=f"{tab_name}_file")
|
153 |
+
if uploaded:
|
154 |
+
if uploaded.name.endswith('.csv'):
|
155 |
+
df = pd.read_csv(uploaded)
|
156 |
+
st.write("CSV Preview:", df.head())
|
157 |
+
col = st.selectbox("Choose column with text", df.columns, key=f"{tab_name}_csv_col")
|
158 |
+
return "\n".join(df[col].dropna().astype(str).tolist())
|
159 |
+
else:
|
160 |
+
return str(uploaded.read(), "utf-8")
|
161 |
+
return ""
|
162 |
+
|
163 |
+
# -------------------- TABS --------------------
|
164 |
+
tab1, tab2, tab3, tab4 = st.tabs(["🎭 Mask Filling", "🏷️ POS Tagging", "🔍 Named Entity Recognition", "📰 News Classification"])
|
165 |
+
|
166 |
+
# -------------------- MASK FILLING TAB --------------------
|
167 |
+
with tab1:
|
168 |
+
st.header("Mask Filling")
|
169 |
+
st.write("Fill in the blanks in Setswana sentences using `[MASK]` token.")
|
170 |
+
|
171 |
+
mask_examples = [
|
172 |
+
"Ke rata go [MASK] dijo tsa Batswana.",
|
173 |
+
"Botswana ke naga e e [MASK] mo Afrika Borwa.",
|
174 |
+
"Bana ba [MASK] sekolo ka Mosupologo.",
|
175 |
+
"Re tshwanetse go [MASK] tikologo ya rona."
|
176 |
+
]
|
177 |
+
|
178 |
+
mask_input = get_input_text("mask", mask_examples)
|
179 |
+
|
180 |
+
if st.button("Fill Masks", key="mask_button") and mask_input.strip():
|
181 |
+
if "[MASK]" not in mask_input:
|
182 |
+
st.warning("Please include [MASK] token in your text.")
|
183 |
else:
|
184 |
+
with st.spinner("Filling masks..."):
|
185 |
+
try:
|
186 |
+
mask_filler = load_mask_filling_model()
|
187 |
+
results = mask_filler(mask_input)
|
188 |
+
|
189 |
+
st.subheader("Predictions")
|
190 |
+
for i, result in enumerate(results, 1):
|
191 |
+
confidence = result['score'] * 100
|
192 |
+
st.write(f"**{i}.** {result['sequence']} (confidence: {confidence:.1f}%)")
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
st.error(f"Error: {str(e)}")
|
196 |
|
197 |
+
# -------------------- POS TAGGING TAB --------------------
|
198 |
+
with tab2:
|
199 |
+
st.header("Parts of Speech Tagging")
|
200 |
+
st.write("Identify grammatical parts of speech in Setswana text.")
|
201 |
+
|
202 |
+
pos_examples = [
|
203 |
+
"Moso ono mo dikgang tsa ura le ura, o tsoga le Oarabile Moamogwe go simolola ka 05:00 - 10:00",
|
204 |
+
"Batho ba le bantsi ba rata go bala dikgang tsa Setswana.",
|
205 |
+
"Ke ithutile Setswana kwa sekolong sa me.",
|
206 |
+
"Dikgomo di ja bojang mo tshimong."
|
207 |
+
]
|
208 |
+
|
209 |
+
pos_input = get_input_text("pos", pos_examples)
|
210 |
+
|
211 |
+
if st.button("Run POS Tagging", key="pos_button") and pos_input.strip():
|
212 |
+
with st.spinner("Running POS tagging..."):
|
213 |
+
try:
|
214 |
+
pos_tagger = load_pos_model()
|
215 |
+
output = pos_tagger(pos_input)
|
216 |
+
entities = merge_entities(output)
|
217 |
+
|
218 |
+
if entities:
|
219 |
+
# Display results table
|
220 |
+
df = pd.DataFrame(entities)[['word', 'entity_group', 'score', 'start', 'end']]
|
221 |
+
df['score'] = df['score'].round(4)
|
222 |
+
st.subheader("POS Tags")
|
223 |
+
st.dataframe(df, use_container_width=True)
|
224 |
+
|
225 |
+
# Visual display
|
226 |
+
st.subheader("Visual Display")
|
227 |
+
html = create_spacy_display(pos_input, entities, "pos")
|
228 |
+
st.markdown(html, unsafe_allow_html=True)
|
229 |
+
else:
|
230 |
+
st.info("No POS tags identified.")
|
231 |
+
|
232 |
+
except Exception as e:
|
233 |
+
st.error(f"Error: {str(e)}")
|
234 |
|
235 |
+
# -------------------- NER TAB --------------------
|
236 |
+
with tab3:
|
237 |
+
st.header("Named Entity Recognition")
|
238 |
+
st.write("Extract named entities like people, places, and organizations from Setswana text.")
|
239 |
+
|
240 |
+
ner_examples = [
|
241 |
+
"Oarabile Moamogwe o tswa Gaborone mme o bereka kwa University of Botswana.",
|
242 |
+
"Motswana yo o tumileng Mpho Balopi o ne a kopana le Rre Khama kwa Presidential Palace.",
|
243 |
+
"Botswana Democratic Party e ne ya kopana le African National Congress.",
|
244 |
+
"Bank of Botswana e mo Gaborone e laola economy ya naga."
|
245 |
+
]
|
246 |
+
|
247 |
+
ner_input = get_input_text("ner", ner_examples)
|
248 |
+
|
249 |
+
if st.button("Run NER", key="ner_button") and ner_input.strip():
|
250 |
+
with st.spinner("Running NER..."):
|
251 |
+
try:
|
252 |
+
ner_pipeline = load_ner_model()
|
253 |
+
output = ner_pipeline(ner_input)
|
254 |
+
entities = merge_entities(output)
|
255 |
+
|
256 |
+
if entities:
|
257 |
+
# Display results table
|
258 |
+
df = pd.DataFrame(entities)[['word', 'entity_group', 'score', 'start', 'end']]
|
259 |
+
df['score'] = df['score'].round(4)
|
260 |
+
st.subheader("Named Entities")
|
261 |
+
st.dataframe(df, use_container_width=True)
|
262 |
+
|
263 |
+
# Visual display
|
264 |
+
st.subheader("Visual Display")
|
265 |
+
html = create_spacy_display(ner_input, entities, "ner")
|
266 |
+
st.markdown(html, unsafe_allow_html=True)
|
267 |
+
else:
|
268 |
+
st.info("No named entities found.")
|
269 |
+
|
270 |
+
except Exception as e:
|
271 |
+
st.error(f"Error: {str(e)}")
|
272 |
|
273 |
+
# -------------------- NEWS CLASSIFICATION TAB --------------------
|
274 |
+
with tab4:
|
275 |
+
st.header("News Classification")
|
276 |
+
st.write("Classify Setswana news articles into different categories.")
|
277 |
+
|
278 |
+
# Category mapping
|
279 |
+
categories = {
|
280 |
+
"arts_culture_entertainment_and_media": "Botsweretshi, setso, boitapoloso le bobegakgang",
|
281 |
+
"crime_law_and_justice": "Bosenyi, molao le bosiamisi",
|
282 |
+
"disaster_accident_and_emergency_incident": "Masetlapelo, kotsi le tiragalo ya maemo a tshoganyetso",
|
283 |
+
"economy_business_and_finance": "Ikonomi, tsa kgwebo le tsa ditšhelete",
|
284 |
+
"education": "Thuto",
|
285 |
+
"environment": "Tikologo",
|
286 |
+
"health": "Boitekanelo",
|
287 |
+
"politics": "Dipolotiki",
|
288 |
+
"religion_and_belief": "Bodumedi le tumelo",
|
289 |
+
"society": "Setšhaba"
|
290 |
+
}
|
291 |
+
|
292 |
+
news_examples = [
|
293 |
+
"Puso ya Botswana e solofeditse gore e tla oketsa dithuso tsa thuto mo dikolong tsa poraemari.",
|
294 |
+
"Dipalo tsa bosenyi di oketsegile mo torong ya Gaborone ka pakeng tse di fetileng.",
|
295 |
+
"Setšhaba sa Botswana se keteka matsalo a Rre le Mme ba ba ratanang thata.",
|
296 |
+
"Boemelo jwa economy ya Botswana bo tsweletse sentle ka ngwaga ono."
|
297 |
+
]
|
298 |
+
|
299 |
+
news_input = get_input_text("news", news_examples)
|
300 |
+
|
301 |
+
if st.button("Classify News", key="news_button") and news_input.strip():
|
302 |
+
with st.spinner("Classifying news..."):
|
303 |
+
try:
|
304 |
+
classifier = load_news_classification_model()
|
305 |
+
results = classifier(news_input)
|
306 |
+
|
307 |
+
# Process results
|
308 |
+
predictions = {}
|
309 |
+
for pred in results[0]:
|
310 |
+
category_en = pred['label']
|
311 |
+
category_tn = categories.get(category_en, category_en)
|
312 |
+
predictions[category_tn] = round(pred['score'], 4)
|
313 |
+
|
314 |
+
# Sort by confidence
|
315 |
+
sorted_predictions = dict(sorted(predictions.items(), key=lambda x: x[1], reverse=True))
|
316 |
+
|
317 |
+
st.subheader("Classification Results")
|
318 |
+
|
319 |
+
# Display as progress bars
|
320 |
+
for category, confidence in list(sorted_predictions.items())[:5]:
|
321 |
+
st.write(f"**{category}**")
|
322 |
+
st.progress(confidence)
|
323 |
+
st.write(f"Confidence: {confidence:.1%}")
|
324 |
+
st.write("")
|
325 |
+
|
326 |
+
# Display full results table
|
327 |
+
with st.expander("View All Categories"):
|
328 |
+
results_df = pd.DataFrame([
|
329 |
+
{"Category": cat, "Confidence": conf}
|
330 |
+
for cat, conf in sorted_predictions.items()
|
331 |
+
])
|
332 |
+
st.dataframe(results_df, use_container_width=True)
|
333 |
+
|
334 |
+
except Exception as e:
|
335 |
+
st.error(f"Error: {str(e)}")
|
336 |
+
|
337 |
+
# -------------------- FOOTER --------------------
|
338 |
+
st.markdown("---")
|
339 |
+
st.markdown("""
|
340 |
+
### 📚 Citation
|
341 |
```bibtex
|
342 |
@inproceedings{marivate2023puoberta,
|
343 |
title = {PuoBERTa: Training and evaluation of a curated language model for Setswana},
|
|
|
349 |
preprint_url = {https://arxiv.org/abs/2310.09141},
|
350 |
dataset_url = {https://github.com/dsfsi/PuoBERTa},
|
351 |
software_url = {https://huggingface.co/dsfsi/PuoBERTa}
|
352 |
+
}
|
353 |
+
```
|
354 |
+
|
355 |
+
**Links**: [Paper](https://arxiv.org/abs/2310.09141) | [GitHub](https://github.com/dsfsi/PuoBERTa) | [HuggingFace](https://huggingface.co/dsfsi/PuoBERTa)
|
356 |
+
""")
|
logo_transparent_small.png
CHANGED
![]() |
![]() |