Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
3 |
import pandas as pd
|
@@ -8,13 +10,7 @@ st.set_page_config(layout="wide")
|
|
8 |
|
9 |
# -------------------- UI HEADER --------------------
|
10 |
st.image("logo_transparent_small.png", use_column_width="always")
|
11 |
-
st.title("Demo for Setswana NER
|
12 |
-
st.markdown("""
|
13 |
-
A Setswana Language Model fine-tuned on MasakhaNER-2 for Named Entity Recognition.
|
14 |
-
|
15 |
-
**Co-authors**: Vukosi Marivate (@vukosi), Moseli Mots'Oehli (@MoseliMotsoehli), Valencia Wagner, Richard Lastrucci, and Isheanesu Dzingirai
|
16 |
-
**Model link**: [arXiv:2310.09141](https://arxiv.org/abs/2310.09141)
|
17 |
-
""")
|
18 |
|
19 |
# -------------------- MODEL SELECTION --------------------
|
20 |
model_list = ['dsfsi/PuoBERTa-NER']
|
@@ -42,12 +38,14 @@ def get_input_text():
|
|
42 |
|
43 |
input_text = get_input_text()
|
44 |
|
|
|
45 |
@st.cache_resource
|
46 |
def load_ner_pipeline(model_checkpoint, strategy):
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
48 |
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
|
49 |
return pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy=strategy)
|
50 |
|
|
|
51 |
def merge_entities(output):
|
52 |
merged = []
|
53 |
for i, ent in enumerate(output):
|
@@ -58,6 +56,7 @@ def merge_entities(output):
|
|
58 |
merged.append(ent)
|
59 |
return merged
|
60 |
|
|
|
61 |
if st.button("Run NER") and input_text.strip():
|
62 |
with st.spinner("Running NER..."):
|
63 |
ner = load_ner_pipeline(model_checkpoint, aggregation_strategy)
|
@@ -69,7 +68,6 @@ if st.button("Run NER") and input_text.strip():
|
|
69 |
st.subheader("Recognized Entities")
|
70 |
st.dataframe(df)
|
71 |
|
72 |
-
# -------------------- SPACY STYLE VISUAL --------------------
|
73 |
spacy_display = {"text": input_text, "ents": [], "title": None}
|
74 |
for ent in entities:
|
75 |
label = ent["entity_group"]
|
@@ -81,4 +79,26 @@ if st.button("Run NER") and input_text.strip():
|
|
81 |
styled_html = f"<style>mark.entity {{ display: inline-block; }}</style><div style='overflow-x:auto;'>{html}</div>"
|
82 |
st.markdown(styled_html, unsafe_allow_html=True)
|
83 |
else:
|
84 |
-
st.info("No entities recognized in the input.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Refactored Streamlit App for Setswana NER using HuggingFace Models
|
2 |
+
|
3 |
import streamlit as st
|
4 |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
5 |
import pandas as pd
|
|
|
10 |
|
11 |
# -------------------- UI HEADER --------------------
|
12 |
st.image("logo_transparent_small.png", use_column_width="always")
|
13 |
+
st.title("Demo for Setswana PuoBERTa NER Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# -------------------- MODEL SELECTION --------------------
|
16 |
model_list = ['dsfsi/PuoBERTa-NER']
|
|
|
38 |
|
39 |
input_text = get_input_text()
|
40 |
|
41 |
+
# -------------------- MODEL LOADING --------------------
|
42 |
@st.cache_resource
|
43 |
def load_ner_pipeline(model_checkpoint, strategy):
|
44 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
45 |
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
|
46 |
return pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy=strategy)
|
47 |
|
48 |
+
# -------------------- ENTITY MERGE --------------------
|
49 |
def merge_entities(output):
|
50 |
merged = []
|
51 |
for i, ent in enumerate(output):
|
|
|
56 |
merged.append(ent)
|
57 |
return merged
|
58 |
|
59 |
+
# -------------------- RUN NER --------------------
|
60 |
if st.button("Run NER") and input_text.strip():
|
61 |
with st.spinner("Running NER..."):
|
62 |
ner = load_ner_pipeline(model_checkpoint, aggregation_strategy)
|
|
|
68 |
st.subheader("Recognized Entities")
|
69 |
st.dataframe(df)
|
70 |
|
|
|
71 |
spacy_display = {"text": input_text, "ents": [], "title": None}
|
72 |
for ent in entities:
|
73 |
label = ent["entity_group"]
|
|
|
79 |
styled_html = f"<style>mark.entity {{ display: inline-block; }}</style><div style='overflow-x:auto;'>{html}</div>"
|
80 |
st.markdown(styled_html, unsafe_allow_html=True)
|
81 |
else:
|
82 |
+
st.info("No entities recognized in the input.")
|
83 |
+
|
84 |
+
# -------------------- AUTHORS, CITATION & FEEDBACK --------------------
|
85 |
+
st.markdown("""
|
86 |
+
---
|
87 |
+
### 📚 Authors & Citation
|
88 |
+
|
89 |
+
**Authors**
|
90 |
+
Vukosi Marivate, Moseli Mots'Oehli, Valencia Wagner, Richard Lastrucci, Isheanesu Dzingirai
|
91 |
+
|
92 |
+
**Citation**
|
93 |
+
```bibtex
|
94 |
+
@inproceedings{marivate2023puoberta,
|
95 |
+
title = {PuoBERTa: Training and evaluation of a curated language model for Setswana},
|
96 |
+
author = {Vukosi Marivate and Moseli Mots'Oehli and Valencia Wagner and Richard Lastrucci and Isheanesu Dzingirai},
|
97 |
+
year = {2023},
|
98 |
+
booktitle= {Artificial Intelligence Research. SACAIR 2023. Communications in Computer and Information Science},
|
99 |
+
url= {https://link.springer.com/chapter/10.1007/978-3-031-49002-6_17},
|
100 |
+
keywords = {NLP},
|
101 |
+
preprint_url = {https://arxiv.org/abs/2310.09141},
|
102 |
+
dataset_url = {https://github.com/dsfsi/PuoBERTa},
|
103 |
+
software_url = {https://huggingface.co/dsfsi/PuoBERTa}
|
104 |
+
}""")
|