Spaces:
Running
Running
devjas1
commited on
Commit
·
f5cad9a
1
Parent(s):
05d496e
(FEAT+REFAC)[Data Preprocessing]: Expand preprocessing for multi-modality & file formats
Browse files- Updated preprocessing logic to support both Raman and FTIR modalities.
- Added parameterization for baseline correction, Savitzky-Golay smoothing, and min-max normalization.
- Enhanced 'preprocess_spectrum()' to accept modality and target length for resampling.
- Improved error handling and data validation for input spectra.
- Updated docstrings and ensured compatibility with TXT, CSV, and JSON file formats for seamless integration with new input pipeline.
- utils/preprocessing.py +133 -10
utils/preprocessing.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
"""
|
2 |
Preprocessing utilities for polymer classification app.
|
3 |
Adapted from the original scripts/preprocess_dataset.py for Hugging Face Spaces deployment.
|
|
|
4 |
"""
|
5 |
|
6 |
from __future__ import annotations
|
@@ -9,8 +10,33 @@ from numpy.typing import DTypeLike
|
|
9 |
from scipy.interpolate import interp1d
|
10 |
from scipy.signal import savgol_filter
|
11 |
from scipy.interpolate import interp1d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
TARGET_LENGTH = 500 # Frozen default per PREPROCESSING_BASELINE
|
14 |
|
15 |
def _ensure_1d_equal(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
|
16 |
x = np.asarray(x, dtype=float)
|
@@ -19,7 +45,10 @@ def _ensure_1d_equal(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, np.ndarr
|
|
19 |
raise ValueError("x and y must be 1D arrays of equal length >= 2")
|
20 |
return x, y
|
21 |
|
22 |
-
|
|
|
|
|
|
|
23 |
"""Linear re-sampling onto a uniform grid of length target_len."""
|
24 |
x, y = _ensure_1d_equal(x, y)
|
25 |
order = np.argsort(x)
|
@@ -29,6 +58,7 @@ def resample_spectrum(x: np.ndarray, y: np.ndarray, target_len: int = TARGET_LEN
|
|
29 |
y_new = f(x_new)
|
30 |
return x_new, y_new
|
31 |
|
|
|
32 |
def remove_baseline(y: np.ndarray, degree: int = 2) -> np.ndarray:
|
33 |
"""Polynomial baseline subtraction (degree=2 default)"""
|
34 |
y = np.asarray(y, dtype=float)
|
@@ -37,19 +67,25 @@ def remove_baseline(y: np.ndarray, degree: int = 2) -> np.ndarray:
|
|
37 |
baseline = np.polyval(coeffs, x_idx)
|
38 |
return y - baseline
|
39 |
|
40 |
-
|
|
|
|
|
|
|
41 |
"""Savitzky-Golay smoothing with safe/odd window enforcement"""
|
42 |
y = np.asarray(y, dtype=float)
|
43 |
window_length = int(window_length)
|
44 |
polyorder = int(polyorder)
|
45 |
# === window must be odd and >= polyorder+1 ===
|
46 |
if window_length % 2 == 0:
|
47 |
-
window_length += 1
|
48 |
min_win = polyorder + 1
|
49 |
if min_win % 2 == 0:
|
50 |
min_win += 1
|
51 |
window_length = max(window_length, min_win)
|
52 |
-
return savgol_filter(
|
|
|
|
|
|
|
53 |
|
54 |
def normalize_spectrum(y: np.ndarray) -> np.ndarray:
|
55 |
"""Min-max normalization to [0, 1] with constant-signal guard."""
|
@@ -60,27 +96,114 @@ def normalize_spectrum(y: np.ndarray) -> np.ndarray:
|
|
60 |
return np.zeros_like(y)
|
61 |
return (y - y_min) / (y_max - y_min)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def preprocess_spectrum(
|
64 |
x: np.ndarray,
|
65 |
y: np.ndarray,
|
66 |
*,
|
67 |
target_len: int = TARGET_LENGTH,
|
|
|
68 |
do_baseline: bool = True,
|
69 |
-
degree: int =
|
70 |
do_smooth: bool = True,
|
71 |
-
window_length: int =
|
72 |
-
polyorder: int =
|
73 |
do_normalize: bool = True,
|
74 |
out_dtype: DTypeLike = np.float32,
|
|
|
75 |
) -> tuple[np.ndarray, np.ndarray]:
|
76 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
x_rs, y_rs = resample_spectrum(x, y, target_len=target_len)
|
|
|
78 |
if do_baseline:
|
79 |
y_rs = remove_baseline(y_rs, degree=degree)
|
|
|
80 |
if do_smooth:
|
81 |
y_rs = smooth_spectrum(y_rs, window_length=window_length, polyorder=polyorder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
if do_normalize:
|
83 |
y_rs = normalize_spectrum(y_rs)
|
|
|
84 |
# === Coerce to a real dtype to satisfy static checkers & runtime ===
|
85 |
out_dt = np.dtype(out_dtype)
|
86 |
-
return x_rs.astype(out_dt, copy=False), y_rs.astype(out_dt, copy=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
Preprocessing utilities for polymer classification app.
|
3 |
Adapted from the original scripts/preprocess_dataset.py for Hugging Face Spaces deployment.
|
4 |
+
Supports both Raman and FTIR spectroscopy modalities.
|
5 |
"""
|
6 |
|
7 |
from __future__ import annotations
|
|
|
10 |
from scipy.interpolate import interp1d
|
11 |
from scipy.signal import savgol_filter
|
12 |
from scipy.interpolate import interp1d
|
13 |
+
from typing import Tuple, Literal
|
14 |
+
|
15 |
+
TARGET_LENGTH = 500 # Frozen default per PREPROCESSING_BASELINE
|
16 |
+
|
17 |
+
# Modality-specific validation ranges (cm⁻¹)
|
18 |
+
MODALITY_RANGES = {
|
19 |
+
"raman": (200, 4000), # Typical Raman range
|
20 |
+
"ftir": (400, 4000), # FTIR wavenumber range
|
21 |
+
}
|
22 |
+
|
23 |
+
# Modality-specific preprocessing parameters
|
24 |
+
MODALITY_PARAMS = {
|
25 |
+
"raman": {
|
26 |
+
"baseline_degree": 2,
|
27 |
+
"smooth_window": 11,
|
28 |
+
"smooth_polyorder": 2,
|
29 |
+
"cosmic_ray_removal": False,
|
30 |
+
},
|
31 |
+
"ftir": {
|
32 |
+
"baseline_degree": 2,
|
33 |
+
"smooth_window": 13, # Slightly larger window for FTIR
|
34 |
+
"smooth_polyorder": 2,
|
35 |
+
"cosmic_ray_removal": False, # Could add atmospheric correction
|
36 |
+
"atmospheric_correction": False, # Placeholder for future implementation
|
37 |
+
},
|
38 |
+
}
|
39 |
|
|
|
40 |
|
41 |
def _ensure_1d_equal(x: np.ndarray, y: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
|
42 |
x = np.asarray(x, dtype=float)
|
|
|
45 |
raise ValueError("x and y must be 1D arrays of equal length >= 2")
|
46 |
return x, y
|
47 |
|
48 |
+
|
49 |
+
def resample_spectrum(
|
50 |
+
x: np.ndarray, y: np.ndarray, target_len: int = TARGET_LENGTH
|
51 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
52 |
"""Linear re-sampling onto a uniform grid of length target_len."""
|
53 |
x, y = _ensure_1d_equal(x, y)
|
54 |
order = np.argsort(x)
|
|
|
58 |
y_new = f(x_new)
|
59 |
return x_new, y_new
|
60 |
|
61 |
+
|
62 |
def remove_baseline(y: np.ndarray, degree: int = 2) -> np.ndarray:
|
63 |
"""Polynomial baseline subtraction (degree=2 default)"""
|
64 |
y = np.asarray(y, dtype=float)
|
|
|
67 |
baseline = np.polyval(coeffs, x_idx)
|
68 |
return y - baseline
|
69 |
|
70 |
+
|
71 |
+
def smooth_spectrum(
|
72 |
+
y: np.ndarray, window_length: int = 11, polyorder: int = 2
|
73 |
+
) -> np.ndarray:
|
74 |
"""Savitzky-Golay smoothing with safe/odd window enforcement"""
|
75 |
y = np.asarray(y, dtype=float)
|
76 |
window_length = int(window_length)
|
77 |
polyorder = int(polyorder)
|
78 |
# === window must be odd and >= polyorder+1 ===
|
79 |
if window_length % 2 == 0:
|
80 |
+
window_length += 1
|
81 |
min_win = polyorder + 1
|
82 |
if min_win % 2 == 0:
|
83 |
min_win += 1
|
84 |
window_length = max(window_length, min_win)
|
85 |
+
return savgol_filter(
|
86 |
+
y, window_length=window_length, polyorder=polyorder, mode="interp"
|
87 |
+
)
|
88 |
+
|
89 |
|
90 |
def normalize_spectrum(y: np.ndarray) -> np.ndarray:
|
91 |
"""Min-max normalization to [0, 1] with constant-signal guard."""
|
|
|
96 |
return np.zeros_like(y)
|
97 |
return (y - y_min) / (y_max - y_min)
|
98 |
|
99 |
+
|
100 |
+
def validate_spectrum_range(x: np.ndarray, modality: str = "raman") -> bool:
|
101 |
+
"""Validate that spectrum wavenumbers are within expected range for modality."""
|
102 |
+
if modality not in MODALITY_RANGES:
|
103 |
+
raise ValueError(
|
104 |
+
f"Unknown modality '{modality}'. Supported: {list(MODALITY_RANGES.keys())}"
|
105 |
+
)
|
106 |
+
|
107 |
+
min_range, max_range = MODALITY_RANGES[modality]
|
108 |
+
x_min, x_max = np.min(x), np.max(x)
|
109 |
+
|
110 |
+
# Check if majority of data points are within range
|
111 |
+
in_range = np.sum((x >= min_range) & (x <= max_range))
|
112 |
+
total_points = len(x)
|
113 |
+
|
114 |
+
return (in_range / total_points) >= 0.7 # At least 70% should be in range
|
115 |
+
|
116 |
+
|
117 |
def preprocess_spectrum(
|
118 |
x: np.ndarray,
|
119 |
y: np.ndarray,
|
120 |
*,
|
121 |
target_len: int = TARGET_LENGTH,
|
122 |
+
modality: str = "raman", # New parameter for modality-specific processing
|
123 |
do_baseline: bool = True,
|
124 |
+
degree: int | None = None, # Will use modality default if None
|
125 |
do_smooth: bool = True,
|
126 |
+
window_length: int | None = None, # Will use modality default if None
|
127 |
+
polyorder: int | None = None, # Will use modality default if None
|
128 |
do_normalize: bool = True,
|
129 |
out_dtype: DTypeLike = np.float32,
|
130 |
+
validate_range: bool = True,
|
131 |
) -> tuple[np.ndarray, np.ndarray]:
|
132 |
+
"""
|
133 |
+
Modality-aware preprocessing: resample -> baseline -> smooth -> normalize
|
134 |
+
|
135 |
+
Args:
|
136 |
+
x, y: Input spectrum data
|
137 |
+
target_len: Target length for resampling
|
138 |
+
modality: 'raman' or 'ftir' for modality-specific processing
|
139 |
+
do_baseline: Enable baseline correction
|
140 |
+
degree: Polynomial degree for baseline (uses modality default if None)
|
141 |
+
do_smooth: Enable smoothing
|
142 |
+
window_length: Smoothing window length (uses modality default if None)
|
143 |
+
polyorder: Polynomial order for smoothing (uses modality default if None)
|
144 |
+
do_normalize: Enable normalization
|
145 |
+
out_dtype: Output data type
|
146 |
+
validate_range: Check if wavenumbers are in expected range for modality
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
Tuple of (resampled_x, processed_y)
|
150 |
+
"""
|
151 |
+
# Validate modality
|
152 |
+
if modality not in MODALITY_PARAMS:
|
153 |
+
raise ValueError(
|
154 |
+
f"Unsupported modality '{modality}'. Supported: {list(MODALITY_PARAMS.keys())}"
|
155 |
+
)
|
156 |
+
|
157 |
+
# Get modality-specific parameters
|
158 |
+
modality_config = MODALITY_PARAMS[modality]
|
159 |
+
|
160 |
+
# Use modality defaults if parameters not specified
|
161 |
+
if degree is None:
|
162 |
+
degree = modality_config["baseline_degree"]
|
163 |
+
if window_length is None:
|
164 |
+
window_length = modality_config["smooth_window"]
|
165 |
+
if polyorder is None:
|
166 |
+
polyorder = modality_config["smooth_polyorder"]
|
167 |
+
|
168 |
+
# Validate spectrum range if requested
|
169 |
+
if validate_range:
|
170 |
+
if not validate_spectrum_range(x, modality):
|
171 |
+
print(
|
172 |
+
f"Warning: Spectrum wavenumbers may not be optimal for {modality.upper()} analysis"
|
173 |
+
)
|
174 |
+
|
175 |
+
# Standard preprocessing pipeline
|
176 |
x_rs, y_rs = resample_spectrum(x, y, target_len=target_len)
|
177 |
+
|
178 |
if do_baseline:
|
179 |
y_rs = remove_baseline(y_rs, degree=degree)
|
180 |
+
|
181 |
if do_smooth:
|
182 |
y_rs = smooth_spectrum(y_rs, window_length=window_length, polyorder=polyorder)
|
183 |
+
|
184 |
+
# FTIR-specific processing (placeholder for future enhancements)
|
185 |
+
if modality == "ftir":
|
186 |
+
if modality_config.get("atmospheric_correction", False):
|
187 |
+
# Placeholder for atmospheric correction
|
188 |
+
pass
|
189 |
+
if modality_config.get("cosmic_ray_removal", False):
|
190 |
+
# Placeholder for cosmic ray removal
|
191 |
+
pass
|
192 |
+
|
193 |
if do_normalize:
|
194 |
y_rs = normalize_spectrum(y_rs)
|
195 |
+
|
196 |
# === Coerce to a real dtype to satisfy static checkers & runtime ===
|
197 |
out_dt = np.dtype(out_dtype)
|
198 |
+
return x_rs.astype(out_dt, copy=False), y_rs.astype(out_dt, copy=False)
|
199 |
+
|
200 |
+
|
201 |
+
def get_modality_info(modality: str) -> dict:
|
202 |
+
"""Get processing parameters and validation ranges for a modality."""
|
203 |
+
if modality not in MODALITY_PARAMS:
|
204 |
+
raise ValueError(f"Unknown modality '{modality}'")
|
205 |
+
|
206 |
+
return {
|
207 |
+
"range": MODALITY_RANGES[modality],
|
208 |
+
"params": MODALITY_PARAMS[modality].copy(),
|
209 |
+
}
|