Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
05d496e
1
Parent(s):
7779f44
(FEAT)[Performance Analytics]: Implement performance tracking utility and dashboard
Browse files- Introduced 'PerformanceMetrics' dataclass to encapsulate fields for inference performance logging.
- Added 'get_performance_tracker()' function to provide a singleton tracker instance.
- Implemented 'PerformanceTracker' class to handle logging, storage, and retrieval of performance metrics to the SQLite database.
- Added methods for logging metrics, aggregating statistics, and exporting analytics reports.
- Created 'display_performance_dashboard()' for Streamlit integration, visualizing metrics (e.g., inference times, confidence, memory usage, accuracy) with charts and tables.
- Error handling and database connection management included for robustness.
- utils/performance_tracker.py +404 -0
utils/performance_tracker.py
ADDED
|
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Performance tracking and logging utilities for POLYMEROS platform."""
|
| 2 |
+
|
| 3 |
+
import time
|
| 4 |
+
import json
|
| 5 |
+
import sqlite3
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Dict, List, Any, Optional
|
| 9 |
+
import numpy as np
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import streamlit as st
|
| 12 |
+
from dataclasses import dataclass, asdict
|
| 13 |
+
from contextlib import contextmanager
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class PerformanceMetrics:
|
| 18 |
+
"""Data class for performance metrics."""
|
| 19 |
+
|
| 20 |
+
model_name: str
|
| 21 |
+
prediction_time: float
|
| 22 |
+
preprocessing_time: float
|
| 23 |
+
total_time: float
|
| 24 |
+
memory_usage_mb: float
|
| 25 |
+
accuracy: Optional[float]
|
| 26 |
+
confidence: float
|
| 27 |
+
timestamp: str
|
| 28 |
+
input_size: int
|
| 29 |
+
modality: str
|
| 30 |
+
|
| 31 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 32 |
+
return asdict(self)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class PerformanceTracker:
|
| 36 |
+
"""Automatic performance tracking and logging system."""
|
| 37 |
+
|
| 38 |
+
def __init__(self, db_path: str = "outputs/performance_tracking.db"):
|
| 39 |
+
self.db_path = Path(db_path)
|
| 40 |
+
self.db_path.parent.mkdir(parents=True, exist_ok=True)
|
| 41 |
+
self._init_database()
|
| 42 |
+
|
| 43 |
+
def _init_database(self):
|
| 44 |
+
"""Initialize SQLite database for performance tracking."""
|
| 45 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 46 |
+
conn.execute(
|
| 47 |
+
"""
|
| 48 |
+
CREATE TABLE IF NOT EXISTS performance_metrics (
|
| 49 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 50 |
+
model_name TEXT NOT NULL,
|
| 51 |
+
prediction_time REAL NOT NULL,
|
| 52 |
+
preprocessing_time REAL NOT NULL,
|
| 53 |
+
total_time REAL NOT NULL,
|
| 54 |
+
memory_usage_mb REAL,
|
| 55 |
+
accuracy REAL,
|
| 56 |
+
confidence REAL NOT NULL,
|
| 57 |
+
timestamp TEXT NOT NULL,
|
| 58 |
+
input_size INTEGER NOT NULL,
|
| 59 |
+
modality TEXT NOT NULL
|
| 60 |
+
)
|
| 61 |
+
"""
|
| 62 |
+
)
|
| 63 |
+
conn.commit()
|
| 64 |
+
|
| 65 |
+
def log_performance(self, metrics: PerformanceMetrics):
|
| 66 |
+
"""Log performance metrics to database."""
|
| 67 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 68 |
+
conn.execute(
|
| 69 |
+
"""
|
| 70 |
+
INSERT INTO performance_metrics
|
| 71 |
+
(model_name, prediction_time, preprocessing_time, total_time,
|
| 72 |
+
memory_usage_mb, accuracy, confidence, timestamp, input_size, modality)
|
| 73 |
+
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
| 74 |
+
""",
|
| 75 |
+
(
|
| 76 |
+
metrics.model_name,
|
| 77 |
+
metrics.prediction_time,
|
| 78 |
+
metrics.preprocessing_time,
|
| 79 |
+
metrics.total_time,
|
| 80 |
+
metrics.memory_usage_mb,
|
| 81 |
+
metrics.accuracy,
|
| 82 |
+
metrics.confidence,
|
| 83 |
+
metrics.timestamp,
|
| 84 |
+
metrics.input_size,
|
| 85 |
+
metrics.modality,
|
| 86 |
+
),
|
| 87 |
+
)
|
| 88 |
+
conn.commit()
|
| 89 |
+
|
| 90 |
+
@contextmanager
|
| 91 |
+
def track_inference(self, model_name: str, modality: str = "raman"):
|
| 92 |
+
"""Context manager for automatic performance tracking."""
|
| 93 |
+
start_time = time.time()
|
| 94 |
+
start_memory = self._get_memory_usage()
|
| 95 |
+
|
| 96 |
+
tracking_data = {
|
| 97 |
+
"model_name": model_name,
|
| 98 |
+
"modality": modality,
|
| 99 |
+
"start_time": start_time,
|
| 100 |
+
"start_memory": start_memory,
|
| 101 |
+
"preprocessing_time": 0.0,
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
yield tracking_data
|
| 106 |
+
finally:
|
| 107 |
+
end_time = time.time()
|
| 108 |
+
end_memory = self._get_memory_usage()
|
| 109 |
+
|
| 110 |
+
total_time = end_time - start_time
|
| 111 |
+
memory_usage = max(end_memory - start_memory, 0)
|
| 112 |
+
|
| 113 |
+
# Create metrics object if not provided
|
| 114 |
+
if "metrics" not in tracking_data:
|
| 115 |
+
metrics = PerformanceMetrics(
|
| 116 |
+
model_name=model_name,
|
| 117 |
+
prediction_time=tracking_data.get("prediction_time", total_time),
|
| 118 |
+
preprocessing_time=tracking_data.get("preprocessing_time", 0.0),
|
| 119 |
+
total_time=total_time,
|
| 120 |
+
memory_usage_mb=memory_usage,
|
| 121 |
+
accuracy=tracking_data.get("accuracy"),
|
| 122 |
+
confidence=tracking_data.get("confidence", 0.0),
|
| 123 |
+
timestamp=datetime.now().isoformat(),
|
| 124 |
+
input_size=tracking_data.get("input_size", 0),
|
| 125 |
+
modality=modality,
|
| 126 |
+
)
|
| 127 |
+
self.log_performance(metrics)
|
| 128 |
+
|
| 129 |
+
def _get_memory_usage(self) -> float:
|
| 130 |
+
"""Get current memory usage in MB."""
|
| 131 |
+
try:
|
| 132 |
+
import psutil
|
| 133 |
+
|
| 134 |
+
process = psutil.Process()
|
| 135 |
+
return process.memory_info().rss / 1024 / 1024 # Convert to MB
|
| 136 |
+
except ImportError:
|
| 137 |
+
return 0.0 # psutil not available
|
| 138 |
+
|
| 139 |
+
def get_recent_metrics(self, limit: int = 100) -> List[Dict[str, Any]]:
|
| 140 |
+
"""Get recent performance metrics."""
|
| 141 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 142 |
+
conn.row_factory = sqlite3.Row # Enable column access by name
|
| 143 |
+
cursor = conn.execute(
|
| 144 |
+
"""
|
| 145 |
+
SELECT * FROM performance_metrics
|
| 146 |
+
ORDER BY timestamp DESC
|
| 147 |
+
LIMIT ?
|
| 148 |
+
""",
|
| 149 |
+
(limit,),
|
| 150 |
+
)
|
| 151 |
+
return [dict(row) for row in cursor.fetchall()]
|
| 152 |
+
|
| 153 |
+
def get_model_statistics(self, model_name: Optional[str] = None) -> Dict[str, Any]:
|
| 154 |
+
"""Get statistical summary of model performance."""
|
| 155 |
+
where_clause = "WHERE model_name = ?" if model_name else ""
|
| 156 |
+
params = (model_name,) if model_name else ()
|
| 157 |
+
|
| 158 |
+
with sqlite3.connect(self.db_path) as conn:
|
| 159 |
+
cursor = conn.execute(
|
| 160 |
+
f"""
|
| 161 |
+
SELECT
|
| 162 |
+
model_name,
|
| 163 |
+
COUNT(*) as total_inferences,
|
| 164 |
+
AVG(prediction_time) as avg_prediction_time,
|
| 165 |
+
AVG(preprocessing_time) as avg_preprocessing_time,
|
| 166 |
+
AVG(total_time) as avg_total_time,
|
| 167 |
+
AVG(memory_usage_mb) as avg_memory_usage,
|
| 168 |
+
AVG(confidence) as avg_confidence,
|
| 169 |
+
MIN(total_time) as fastest_inference,
|
| 170 |
+
MAX(total_time) as slowest_inference
|
| 171 |
+
FROM performance_metrics
|
| 172 |
+
{where_clause}
|
| 173 |
+
GROUP BY model_name
|
| 174 |
+
""",
|
| 175 |
+
params,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
results = cursor.fetchall()
|
| 179 |
+
if model_name and results:
|
| 180 |
+
# Return single model stats as dict
|
| 181 |
+
row = results[0]
|
| 182 |
+
return {
|
| 183 |
+
"model_name": row[0],
|
| 184 |
+
"total_inferences": row[1],
|
| 185 |
+
"avg_prediction_time": row[2],
|
| 186 |
+
"avg_preprocessing_time": row[3],
|
| 187 |
+
"avg_total_time": row[4],
|
| 188 |
+
"avg_memory_usage": row[5],
|
| 189 |
+
"avg_confidence": row[6],
|
| 190 |
+
"fastest_inference": row[7],
|
| 191 |
+
"slowest_inference": row[8],
|
| 192 |
+
}
|
| 193 |
+
elif not model_name:
|
| 194 |
+
# Return all models stats as dict of dicts
|
| 195 |
+
return {
|
| 196 |
+
row[0]: {
|
| 197 |
+
"model_name": row[0],
|
| 198 |
+
"total_inferences": row[1],
|
| 199 |
+
"avg_prediction_time": row[2],
|
| 200 |
+
"avg_preprocessing_time": row[3],
|
| 201 |
+
"avg_total_time": row[4],
|
| 202 |
+
"avg_memory_usage": row[5],
|
| 203 |
+
"avg_confidence": row[6],
|
| 204 |
+
"fastest_inference": row[7],
|
| 205 |
+
"slowest_inference": row[8],
|
| 206 |
+
}
|
| 207 |
+
for row in results
|
| 208 |
+
}
|
| 209 |
+
else:
|
| 210 |
+
return {}
|
| 211 |
+
|
| 212 |
+
def create_performance_visualization(self) -> plt.Figure:
|
| 213 |
+
"""Create performance visualization charts."""
|
| 214 |
+
metrics = self.get_recent_metrics(50)
|
| 215 |
+
|
| 216 |
+
if not metrics:
|
| 217 |
+
return None
|
| 218 |
+
|
| 219 |
+
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8))
|
| 220 |
+
|
| 221 |
+
# Convert to convenient format
|
| 222 |
+
models = [m["model_name"] for m in metrics]
|
| 223 |
+
times = [m["total_time"] for m in metrics]
|
| 224 |
+
confidences = [m["confidence"] for m in metrics]
|
| 225 |
+
timestamps = [datetime.fromisoformat(m["timestamp"]) for m in metrics]
|
| 226 |
+
|
| 227 |
+
# 1. Inference Time Over Time
|
| 228 |
+
ax1.plot(timestamps, times, "o-", alpha=0.7)
|
| 229 |
+
ax1.set_title("Inference Time Over Time")
|
| 230 |
+
ax1.set_ylabel("Time (seconds)")
|
| 231 |
+
ax1.tick_params(axis="x", rotation=45)
|
| 232 |
+
|
| 233 |
+
# 2. Performance by Model
|
| 234 |
+
model_stats = self.get_model_statistics()
|
| 235 |
+
if model_stats:
|
| 236 |
+
model_names = list(model_stats.keys())
|
| 237 |
+
avg_times = [model_stats[m]["avg_total_time"] for m in model_names]
|
| 238 |
+
|
| 239 |
+
ax2.bar(model_names, avg_times, alpha=0.7)
|
| 240 |
+
ax2.set_title("Average Inference Time by Model")
|
| 241 |
+
ax2.set_ylabel("Time (seconds)")
|
| 242 |
+
ax2.tick_params(axis="x", rotation=45)
|
| 243 |
+
|
| 244 |
+
# 3. Confidence Distribution
|
| 245 |
+
ax3.hist(confidences, bins=20, alpha=0.7)
|
| 246 |
+
ax3.set_title("Confidence Score Distribution")
|
| 247 |
+
ax3.set_xlabel("Confidence")
|
| 248 |
+
ax3.set_ylabel("Frequency")
|
| 249 |
+
|
| 250 |
+
# 4. Memory Usage if available
|
| 251 |
+
memory_usage = [
|
| 252 |
+
m["memory_usage_mb"] for m in metrics if m["memory_usage_mb"] is not None
|
| 253 |
+
]
|
| 254 |
+
if memory_usage:
|
| 255 |
+
ax4.plot(range(len(memory_usage)), memory_usage, "o-", alpha=0.7)
|
| 256 |
+
ax4.set_title("Memory Usage")
|
| 257 |
+
ax4.set_xlabel("Inference Number")
|
| 258 |
+
ax4.set_ylabel("Memory (MB)")
|
| 259 |
+
else:
|
| 260 |
+
ax4.text(
|
| 261 |
+
0.5,
|
| 262 |
+
0.5,
|
| 263 |
+
"Memory tracking\nnot available",
|
| 264 |
+
ha="center",
|
| 265 |
+
va="center",
|
| 266 |
+
transform=ax4.transAxes,
|
| 267 |
+
)
|
| 268 |
+
ax4.set_title("Memory Usage")
|
| 269 |
+
|
| 270 |
+
plt.tight_layout()
|
| 271 |
+
return fig
|
| 272 |
+
|
| 273 |
+
def export_metrics(self, format: str = "json") -> str:
|
| 274 |
+
"""Export performance metrics in specified format."""
|
| 275 |
+
metrics = self.get_recent_metrics(1000) # Get more for export
|
| 276 |
+
|
| 277 |
+
if format == "json":
|
| 278 |
+
return json.dumps(metrics, indent=2, default=str)
|
| 279 |
+
elif format == "csv":
|
| 280 |
+
import pandas as pd
|
| 281 |
+
|
| 282 |
+
df = pd.DataFrame(metrics)
|
| 283 |
+
return df.to_csv(index=False)
|
| 284 |
+
else:
|
| 285 |
+
raise ValueError(f"Unsupported format: {format}")
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
# Global tracker instance
|
| 289 |
+
_tracker = None
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def get_performance_tracker() -> PerformanceTracker:
|
| 293 |
+
"""Get global performance tracker instance."""
|
| 294 |
+
global _tracker
|
| 295 |
+
if _tracker is None:
|
| 296 |
+
_tracker = PerformanceTracker()
|
| 297 |
+
return _tracker
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def display_performance_dashboard():
|
| 301 |
+
"""Display performance tracking dashboard in Streamlit."""
|
| 302 |
+
tracker = get_performance_tracker()
|
| 303 |
+
|
| 304 |
+
st.markdown("### 📈 Performance Dashboard")
|
| 305 |
+
|
| 306 |
+
# Recent metrics summary
|
| 307 |
+
recent_metrics = tracker.get_recent_metrics(20)
|
| 308 |
+
|
| 309 |
+
if not recent_metrics:
|
| 310 |
+
st.info(
|
| 311 |
+
"No performance data available yet. Run some inferences to see metrics."
|
| 312 |
+
)
|
| 313 |
+
return
|
| 314 |
+
|
| 315 |
+
# Summary statistics
|
| 316 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 317 |
+
|
| 318 |
+
total_inferences = len(recent_metrics)
|
| 319 |
+
avg_time = np.mean([m["total_time"] for m in recent_metrics])
|
| 320 |
+
avg_confidence = np.mean([m["confidence"] for m in recent_metrics])
|
| 321 |
+
unique_models = len(set(m["model_name"] for m in recent_metrics))
|
| 322 |
+
|
| 323 |
+
with col1:
|
| 324 |
+
st.metric("Total Inferences", total_inferences)
|
| 325 |
+
with col2:
|
| 326 |
+
st.metric("Avg Time", f"{avg_time:.3f}s")
|
| 327 |
+
with col3:
|
| 328 |
+
st.metric("Avg Confidence", f"{avg_confidence:.3f}")
|
| 329 |
+
with col4:
|
| 330 |
+
st.metric("Models Used", unique_models)
|
| 331 |
+
|
| 332 |
+
# Performance visualization
|
| 333 |
+
fig = tracker.create_performance_visualization()
|
| 334 |
+
if fig:
|
| 335 |
+
st.pyplot(fig)
|
| 336 |
+
|
| 337 |
+
# Model comparison table
|
| 338 |
+
st.markdown("#### Model Performance Comparison")
|
| 339 |
+
model_stats = tracker.get_model_statistics()
|
| 340 |
+
|
| 341 |
+
if model_stats:
|
| 342 |
+
import pandas as pd
|
| 343 |
+
|
| 344 |
+
stats_data = []
|
| 345 |
+
for model_name, stats in model_stats.items():
|
| 346 |
+
stats_data.append(
|
| 347 |
+
{
|
| 348 |
+
"Model": model_name,
|
| 349 |
+
"Total Inferences": stats["total_inferences"],
|
| 350 |
+
"Avg Time (s)": f"{stats['avg_total_time']:.3f}",
|
| 351 |
+
"Avg Confidence": f"{stats['avg_confidence']:.3f}",
|
| 352 |
+
"Fastest (s)": f"{stats['fastest_inference']:.3f}",
|
| 353 |
+
"Slowest (s)": f"{stats['slowest_inference']:.3f}",
|
| 354 |
+
}
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
df = pd.DataFrame(stats_data)
|
| 358 |
+
st.dataframe(df, use_container_width=True)
|
| 359 |
+
|
| 360 |
+
# Export options
|
| 361 |
+
with st.expander("📥 Export Performance Data"):
|
| 362 |
+
col1, col2 = st.columns(2)
|
| 363 |
+
|
| 364 |
+
with col1:
|
| 365 |
+
if st.button("Export JSON"):
|
| 366 |
+
json_data = tracker.export_metrics("json")
|
| 367 |
+
st.download_button(
|
| 368 |
+
"Download JSON",
|
| 369 |
+
json_data,
|
| 370 |
+
"performance_metrics.json",
|
| 371 |
+
"application/json",
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
with col2:
|
| 375 |
+
if st.button("Export CSV"):
|
| 376 |
+
csv_data = tracker.export_metrics("csv")
|
| 377 |
+
st.download_button(
|
| 378 |
+
"Download CSV", csv_data, "performance_metrics.csv", "text/csv"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
if __name__ == "__main__":
|
| 383 |
+
# Test the performance tracker
|
| 384 |
+
tracker = PerformanceTracker()
|
| 385 |
+
|
| 386 |
+
# Simulate some metrics
|
| 387 |
+
for i in range(5):
|
| 388 |
+
metrics = PerformanceMetrics(
|
| 389 |
+
model_name=f"test_model_{i%2}",
|
| 390 |
+
prediction_time=0.1 + i * 0.01,
|
| 391 |
+
preprocessing_time=0.05,
|
| 392 |
+
total_time=0.15 + i * 0.01,
|
| 393 |
+
memory_usage_mb=100 + i * 10,
|
| 394 |
+
accuracy=0.8 + i * 0.02,
|
| 395 |
+
confidence=0.7 + i * 0.05,
|
| 396 |
+
timestamp=datetime.now().isoformat(),
|
| 397 |
+
input_size=500,
|
| 398 |
+
modality="raman",
|
| 399 |
+
)
|
| 400 |
+
tracker.log_performance(metrics)
|
| 401 |
+
|
| 402 |
+
print("Performance tracking test completed!")
|
| 403 |
+
print(f"Recent metrics: {len(tracker.get_recent_metrics())}")
|
| 404 |
+
print(f"Model stats: {tracker.get_model_statistics()}")
|