Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
b2793c5
1
Parent(s):
c024e8f
Adds enhanced data management system for spectral analysis
Browse filesImplements a comprehensive framework for managing spectral data, including metadata preservation, provenance tracking, and contextual knowledge networks.
Introduces classes for spectral metadata, provenance records, and contextual spectra, facilitating efficient data handling and quality assessment. Enhances user experience through intelligent preprocessing recommendations and session management.
This system aims to improve reproducibility and data quality in scientific research.
- modules/enhanced_data.py +448 -0
modules/enhanced_data.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Enhanced Data Management System for POLYMEROS
|
3 |
+
Implements contextual knowledge networks and metadata preservation
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
import hashlib
|
9 |
+
from dataclasses import dataclass, asdict
|
10 |
+
from datetime import datetime
|
11 |
+
from typing import Dict, List, Optional, Any, Tuple
|
12 |
+
from pathlib import Path
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from utils.preprocessing import preprocess_spectrum
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class SpectralMetadata:
|
20 |
+
"""Comprehensive metadata for spectral data"""
|
21 |
+
|
22 |
+
filename: str
|
23 |
+
acquisition_date: Optional[str] = None
|
24 |
+
instrument_type: str = "Raman"
|
25 |
+
laser_wavelength: Optional[float] = None
|
26 |
+
integration_time: Optional[float] = None
|
27 |
+
laser_power: Optional[float] = None
|
28 |
+
temperature: Optional[float] = None
|
29 |
+
humidity: Optional[float] = None
|
30 |
+
sample_preparation: Optional[str] = None
|
31 |
+
operator: Optional[str] = None
|
32 |
+
data_quality_score: Optional[float] = None
|
33 |
+
preprocessing_history: Optional[List[str]] = None
|
34 |
+
|
35 |
+
def __post_init__(self):
|
36 |
+
if self.preprocessing_history is None:
|
37 |
+
self.preprocessing_history = []
|
38 |
+
|
39 |
+
def to_dict(self) -> Dict[str, Any]:
|
40 |
+
return asdict(self)
|
41 |
+
|
42 |
+
@classmethod
|
43 |
+
def from_dict(cls, data: Dict[str, Any]) -> "SpectralMetadata":
|
44 |
+
return cls(**data)
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class ProvenanceRecord:
|
49 |
+
"""Complete provenance tracking for scientific reproducibility"""
|
50 |
+
|
51 |
+
operation: str
|
52 |
+
timestamp: str
|
53 |
+
parameters: Dict[str, Any]
|
54 |
+
input_hash: str
|
55 |
+
output_hash: str
|
56 |
+
operator: str = "system"
|
57 |
+
|
58 |
+
def to_dict(self) -> Dict[str, Any]:
|
59 |
+
return asdict(self)
|
60 |
+
|
61 |
+
@classmethod
|
62 |
+
def from_dict(cls, data: Dict[str, Any]) -> "ProvenanceRecord":
|
63 |
+
return cls(**data)
|
64 |
+
|
65 |
+
|
66 |
+
class ContextualSpectrum:
|
67 |
+
"""Enhanced spectral data with context and provenance"""
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
x_data: np.ndarray,
|
72 |
+
y_data: np.ndarray,
|
73 |
+
metadata: SpectralMetadata,
|
74 |
+
label: Optional[int] = None,
|
75 |
+
):
|
76 |
+
self.x_data = x_data
|
77 |
+
self.y_data = y_data
|
78 |
+
self.metadata = metadata
|
79 |
+
self.label = label
|
80 |
+
self.provenance: List[ProvenanceRecord] = []
|
81 |
+
self.relationships: Dict[str, List[str]] = {
|
82 |
+
"similar_spectra": [],
|
83 |
+
"related_samples": [],
|
84 |
+
}
|
85 |
+
|
86 |
+
# Calculate initial hash
|
87 |
+
self._update_hash()
|
88 |
+
|
89 |
+
def _calculate_hash(self, data: np.ndarray) -> str:
|
90 |
+
"""Calculate hash of numpy array for provenance tracking"""
|
91 |
+
return hashlib.sha256(data.tobytes()).hexdigest()[:16]
|
92 |
+
|
93 |
+
def _update_hash(self):
|
94 |
+
"""Update data hash after modifications"""
|
95 |
+
self.data_hash = self._calculate_hash(self.y_data)
|
96 |
+
|
97 |
+
def add_provenance(
|
98 |
+
self, operation: str, parameters: Dict[str, Any], operator: str = "system"
|
99 |
+
):
|
100 |
+
"""Add provenance record for operation"""
|
101 |
+
input_hash = self.data_hash
|
102 |
+
|
103 |
+
record = ProvenanceRecord(
|
104 |
+
operation=operation,
|
105 |
+
timestamp=datetime.now().isoformat(),
|
106 |
+
parameters=parameters,
|
107 |
+
input_hash=input_hash,
|
108 |
+
output_hash="", # Will be updated after operation
|
109 |
+
operator=operator,
|
110 |
+
)
|
111 |
+
|
112 |
+
self.provenance.append(record)
|
113 |
+
return record
|
114 |
+
|
115 |
+
def finalize_provenance(self, record: ProvenanceRecord):
|
116 |
+
"""Finalize provenance record with output hash"""
|
117 |
+
self._update_hash()
|
118 |
+
record.output_hash = self.data_hash
|
119 |
+
|
120 |
+
def apply_preprocessing(self, **kwargs) -> Tuple[np.ndarray, np.ndarray]:
|
121 |
+
"""Apply preprocessing with full provenance tracking"""
|
122 |
+
record = self.add_provenance("preprocessing", kwargs)
|
123 |
+
|
124 |
+
# Apply preprocessing
|
125 |
+
x_processed, y_processed = preprocess_spectrum(
|
126 |
+
self.x_data, self.y_data, **kwargs
|
127 |
+
)
|
128 |
+
|
129 |
+
# Update data and finalize provenance
|
130 |
+
self.x_data = x_processed
|
131 |
+
self.y_data = y_processed
|
132 |
+
self.finalize_provenance(record)
|
133 |
+
|
134 |
+
# Update metadata
|
135 |
+
if self.metadata.preprocessing_history is None:
|
136 |
+
self.metadata.preprocessing_history = []
|
137 |
+
self.metadata.preprocessing_history.append(
|
138 |
+
f"preprocessing_{datetime.now().isoformat()[:19]}"
|
139 |
+
)
|
140 |
+
|
141 |
+
return x_processed, y_processed
|
142 |
+
|
143 |
+
def to_dict(self) -> Dict[str, Any]:
|
144 |
+
"""Serialize to dictionary"""
|
145 |
+
return {
|
146 |
+
"x_data": self.x_data.tolist(),
|
147 |
+
"y_data": self.y_data.tolist(),
|
148 |
+
"metadata": self.metadata.to_dict(),
|
149 |
+
"label": self.label,
|
150 |
+
"provenance": [p.to_dict() for p in self.provenance],
|
151 |
+
"relationships": self.relationships,
|
152 |
+
"data_hash": self.data_hash,
|
153 |
+
}
|
154 |
+
|
155 |
+
@classmethod
|
156 |
+
def from_dict(cls, data: Dict[str, Any]) -> "ContextualSpectrum":
|
157 |
+
"""Deserialize from dictionary"""
|
158 |
+
spectrum = cls(
|
159 |
+
x_data=np.array(data["x_data"]),
|
160 |
+
y_data=np.array(data["y_data"]),
|
161 |
+
metadata=SpectralMetadata.from_dict(data["metadata"]),
|
162 |
+
label=data.get("label"),
|
163 |
+
)
|
164 |
+
spectrum.provenance = [
|
165 |
+
ProvenanceRecord.from_dict(p) for p in data["provenance"]
|
166 |
+
]
|
167 |
+
spectrum.relationships = data["relationships"]
|
168 |
+
spectrum.data_hash = data["data_hash"]
|
169 |
+
return spectrum
|
170 |
+
|
171 |
+
|
172 |
+
class KnowledgeGraph:
|
173 |
+
"""Knowledge graph for managing relationships between spectra and samples"""
|
174 |
+
|
175 |
+
def __init__(self):
|
176 |
+
self.nodes: Dict[str, ContextualSpectrum] = {}
|
177 |
+
self.edges: Dict[str, List[Dict[str, Any]]] = {}
|
178 |
+
|
179 |
+
def add_spectrum(self, spectrum: ContextualSpectrum, node_id: Optional[str] = None):
|
180 |
+
"""Add spectrum to knowledge graph"""
|
181 |
+
if node_id is None:
|
182 |
+
node_id = spectrum.data_hash
|
183 |
+
|
184 |
+
self.nodes[node_id] = spectrum
|
185 |
+
self.edges[node_id] = []
|
186 |
+
|
187 |
+
# Auto-detect relationships
|
188 |
+
self._detect_relationships(node_id)
|
189 |
+
|
190 |
+
def _detect_relationships(self, node_id: str):
|
191 |
+
"""Automatically detect relationships between spectra"""
|
192 |
+
current_spectrum = self.nodes[node_id]
|
193 |
+
|
194 |
+
for other_id, other_spectrum in self.nodes.items():
|
195 |
+
if other_id == node_id:
|
196 |
+
continue
|
197 |
+
|
198 |
+
# Check for similar acquisition conditions
|
199 |
+
if self._are_similar_conditions(current_spectrum, other_spectrum):
|
200 |
+
self.add_relationship(node_id, other_id, "similar_conditions", 0.8)
|
201 |
+
|
202 |
+
# Check for spectral similarity (simplified)
|
203 |
+
similarity = self._calculate_spectral_similarity(
|
204 |
+
current_spectrum.y_data, other_spectrum.y_data
|
205 |
+
)
|
206 |
+
if similarity > 0.9:
|
207 |
+
self.add_relationship(
|
208 |
+
node_id, other_id, "spectral_similarity", similarity
|
209 |
+
)
|
210 |
+
|
211 |
+
def _are_similar_conditions(
|
212 |
+
self, spec1: ContextualSpectrum, spec2: ContextualSpectrum
|
213 |
+
) -> bool:
|
214 |
+
"""Check if two spectra were acquired under similar conditions"""
|
215 |
+
meta1, meta2 = spec1.metadata, spec2.metadata
|
216 |
+
|
217 |
+
# Check instrument type
|
218 |
+
if meta1.instrument_type != meta2.instrument_type:
|
219 |
+
return False
|
220 |
+
|
221 |
+
# Check laser wavelength (if available)
|
222 |
+
if (
|
223 |
+
meta1.laser_wavelength
|
224 |
+
and meta2.laser_wavelength
|
225 |
+
and abs(meta1.laser_wavelength - meta2.laser_wavelength) > 1.0
|
226 |
+
):
|
227 |
+
return False
|
228 |
+
|
229 |
+
return True
|
230 |
+
|
231 |
+
def _calculate_spectral_similarity(
|
232 |
+
self, spec1: np.ndarray, spec2: np.ndarray
|
233 |
+
) -> float:
|
234 |
+
"""Calculate similarity between two spectra"""
|
235 |
+
if len(spec1) != len(spec2):
|
236 |
+
return 0.0
|
237 |
+
|
238 |
+
# Normalize spectra
|
239 |
+
spec1_norm = (spec1 - np.min(spec1)) / (np.max(spec1) - np.min(spec1) + 1e-8)
|
240 |
+
spec2_norm = (spec2 - np.min(spec2)) / (np.max(spec2) - np.min(spec2) + 1e-8)
|
241 |
+
|
242 |
+
# Calculate correlation coefficient
|
243 |
+
correlation = np.corrcoef(spec1_norm, spec2_norm)[0, 1]
|
244 |
+
return max(0.0, correlation)
|
245 |
+
|
246 |
+
def add_relationship(
|
247 |
+
self, node1: str, node2: str, relationship_type: str, weight: float
|
248 |
+
):
|
249 |
+
"""Add relationship between two nodes"""
|
250 |
+
edge = {
|
251 |
+
"target": node2,
|
252 |
+
"type": relationship_type,
|
253 |
+
"weight": weight,
|
254 |
+
"timestamp": datetime.now().isoformat(),
|
255 |
+
}
|
256 |
+
|
257 |
+
self.edges[node1].append(edge)
|
258 |
+
|
259 |
+
# Add reverse edge
|
260 |
+
reverse_edge = {
|
261 |
+
"target": node1,
|
262 |
+
"type": relationship_type,
|
263 |
+
"weight": weight,
|
264 |
+
"timestamp": datetime.now().isoformat(),
|
265 |
+
}
|
266 |
+
|
267 |
+
if node2 in self.edges:
|
268 |
+
self.edges[node2].append(reverse_edge)
|
269 |
+
|
270 |
+
def get_related_spectra(
|
271 |
+
self, node_id: str, relationship_type: Optional[str] = None
|
272 |
+
) -> List[str]:
|
273 |
+
"""Get spectra related to given node"""
|
274 |
+
if node_id not in self.edges:
|
275 |
+
return []
|
276 |
+
|
277 |
+
related = []
|
278 |
+
for edge in self.edges[node_id]:
|
279 |
+
if relationship_type is None or edge["type"] == relationship_type:
|
280 |
+
related.append(edge["target"])
|
281 |
+
|
282 |
+
return related
|
283 |
+
|
284 |
+
def export_knowledge_graph(self, filepath: str):
|
285 |
+
"""Export knowledge graph to JSON file"""
|
286 |
+
export_data = {
|
287 |
+
"nodes": {k: v.to_dict() for k, v in self.nodes.items()},
|
288 |
+
"edges": self.edges,
|
289 |
+
"metadata": {
|
290 |
+
"created": datetime.now().isoformat(),
|
291 |
+
"total_nodes": len(self.nodes),
|
292 |
+
"total_edges": sum(len(edges) for edges in self.edges.values()),
|
293 |
+
},
|
294 |
+
}
|
295 |
+
|
296 |
+
with open(filepath, "w", encoding="utf-8") as f:
|
297 |
+
json.dump(export_data, f, indent=2)
|
298 |
+
|
299 |
+
|
300 |
+
class EnhancedDataManager:
|
301 |
+
"""Main data management interface for POLYMEROS"""
|
302 |
+
|
303 |
+
def __init__(self, cache_dir: str = "data_cache"):
|
304 |
+
self.cache_dir = Path(cache_dir)
|
305 |
+
self.cache_dir.mkdir(exist_ok=True)
|
306 |
+
self.knowledge_graph = KnowledgeGraph()
|
307 |
+
self.quality_thresholds = {
|
308 |
+
"min_intensity": 10.0,
|
309 |
+
"min_signal_to_noise": 3.0,
|
310 |
+
"max_baseline_drift": 0.1,
|
311 |
+
}
|
312 |
+
|
313 |
+
def load_spectrum_with_context(
|
314 |
+
self, filepath: str, metadata: Optional[Dict[str, Any]] = None
|
315 |
+
) -> ContextualSpectrum:
|
316 |
+
"""Load spectrum with automatic metadata extraction and quality assessment"""
|
317 |
+
from scripts.plot_spectrum import load_spectrum
|
318 |
+
|
319 |
+
# Load raw data
|
320 |
+
x_data, y_data = load_spectrum(filepath)
|
321 |
+
|
322 |
+
# Extract metadata
|
323 |
+
if metadata is None:
|
324 |
+
metadata = self._extract_metadata_from_file(filepath)
|
325 |
+
|
326 |
+
spectral_metadata = SpectralMetadata(
|
327 |
+
filename=os.path.basename(filepath), **metadata
|
328 |
+
)
|
329 |
+
|
330 |
+
# Create contextual spectrum
|
331 |
+
spectrum = ContextualSpectrum(
|
332 |
+
np.array(x_data), np.array(y_data), spectral_metadata
|
333 |
+
)
|
334 |
+
|
335 |
+
# Assess data quality
|
336 |
+
quality_score = self._assess_data_quality(np.array(y_data))
|
337 |
+
spectrum.metadata.data_quality_score = quality_score
|
338 |
+
|
339 |
+
# Add to knowledge graph
|
340 |
+
self.knowledge_graph.add_spectrum(spectrum)
|
341 |
+
|
342 |
+
return spectrum
|
343 |
+
|
344 |
+
def _extract_metadata_from_file(self, filepath: str) -> Dict[str, Any]:
|
345 |
+
"""Extract metadata from filename and file properties"""
|
346 |
+
filename = os.path.basename(filepath)
|
347 |
+
|
348 |
+
metadata = {
|
349 |
+
"acquisition_date": datetime.fromtimestamp(
|
350 |
+
os.path.getmtime(filepath)
|
351 |
+
).isoformat(),
|
352 |
+
"instrument_type": "Raman", # Default
|
353 |
+
}
|
354 |
+
|
355 |
+
# Extract information from filename patterns
|
356 |
+
if "785nm" in filename.lower():
|
357 |
+
metadata["laser_wavelength"] = "785.0"
|
358 |
+
elif "532nm" in filename.lower():
|
359 |
+
metadata["laser_wavelength"] = "532.0"
|
360 |
+
|
361 |
+
return metadata
|
362 |
+
|
363 |
+
def _assess_data_quality(self, y_data: np.ndarray) -> float:
|
364 |
+
"""Assess spectral data quality using multiple metrics"""
|
365 |
+
scores = []
|
366 |
+
|
367 |
+
# Signal intensity check
|
368 |
+
max_intensity = np.max(y_data)
|
369 |
+
if max_intensity >= self.quality_thresholds["min_intensity"]:
|
370 |
+
scores.append(min(1.0, max_intensity / 1000.0))
|
371 |
+
else:
|
372 |
+
scores.append(0.0)
|
373 |
+
|
374 |
+
# Signal-to-noise ratio estimation
|
375 |
+
signal = np.mean(y_data)
|
376 |
+
noise = np.std(y_data[y_data < np.percentile(y_data, 10)])
|
377 |
+
snr = signal / (noise + 1e-8)
|
378 |
+
|
379 |
+
if snr >= self.quality_thresholds["min_signal_to_noise"]:
|
380 |
+
scores.append(min(1.0, snr / 10.0))
|
381 |
+
else:
|
382 |
+
scores.append(0.0)
|
383 |
+
|
384 |
+
# Baseline stability
|
385 |
+
baseline_variation = np.std(y_data) / (np.mean(y_data) + 1e-8)
|
386 |
+
baseline_score = max(
|
387 |
+
0.0,
|
388 |
+
1.0 - baseline_variation / self.quality_thresholds["max_baseline_drift"],
|
389 |
+
)
|
390 |
+
scores.append(baseline_score)
|
391 |
+
|
392 |
+
return float(np.mean(scores))
|
393 |
+
|
394 |
+
def preprocess_with_tracking(
|
395 |
+
self, spectrum: ContextualSpectrum, **preprocessing_params
|
396 |
+
) -> ContextualSpectrum:
|
397 |
+
"""Apply preprocessing with full tracking"""
|
398 |
+
spectrum.apply_preprocessing(**preprocessing_params)
|
399 |
+
return spectrum
|
400 |
+
|
401 |
+
def get_preprocessing_recommendations(
|
402 |
+
self, spectrum: ContextualSpectrum
|
403 |
+
) -> Dict[str, Any]:
|
404 |
+
"""Provide intelligent preprocessing recommendations based on data characteristics"""
|
405 |
+
recommendations = {}
|
406 |
+
|
407 |
+
y_data = spectrum.y_data
|
408 |
+
|
409 |
+
# Baseline correction recommendation
|
410 |
+
baseline_variation = np.std(np.diff(y_data))
|
411 |
+
if baseline_variation > 0.05:
|
412 |
+
recommendations["do_baseline"] = True
|
413 |
+
recommendations["degree"] = 3 if baseline_variation > 0.1 else 2
|
414 |
+
else:
|
415 |
+
recommendations["do_baseline"] = False
|
416 |
+
|
417 |
+
# Smoothing recommendation
|
418 |
+
noise_level = np.std(y_data[y_data < np.percentile(y_data, 20)])
|
419 |
+
if noise_level > 0.01:
|
420 |
+
recommendations["do_smooth"] = True
|
421 |
+
recommendations["window_length"] = 11 if noise_level > 0.05 else 7
|
422 |
+
else:
|
423 |
+
recommendations["do_smooth"] = False
|
424 |
+
|
425 |
+
# Normalization is generally recommended
|
426 |
+
recommendations["do_normalize"] = True
|
427 |
+
|
428 |
+
return recommendations
|
429 |
+
|
430 |
+
def save_session(self, session_name: str):
|
431 |
+
"""Save current data management session"""
|
432 |
+
session_file = self.cache_dir / f"{session_name}_session.json"
|
433 |
+
self.knowledge_graph.export_knowledge_graph(str(session_file))
|
434 |
+
|
435 |
+
def load_session(self, session_name: str):
|
436 |
+
"""Load saved data management session"""
|
437 |
+
session_file = self.cache_dir / f"{session_name}_session.json"
|
438 |
+
|
439 |
+
if session_file.exists():
|
440 |
+
with open(session_file, "r") as f:
|
441 |
+
data = json.load(f)
|
442 |
+
|
443 |
+
# Reconstruct knowledge graph
|
444 |
+
for node_id, node_data in data["nodes"].items():
|
445 |
+
spectrum = ContextualSpectrum.from_dict(node_data)
|
446 |
+
self.knowledge_graph.nodes[node_id] = spectrum
|
447 |
+
|
448 |
+
self.knowledge_graph.edges = data["edges"]
|