Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
Β·
c024e8f
1
Parent(s):
68f2a01
Adds enhanced analysis functionality for spectroscopy
Browse filesIntroduces a new interface for advanced multi-modal spectroscopy analysis using modern machine learning techniques.
Implements features for file upload, data quality assessment, intelligent preprocessing recommendations, and transparent AI analysis with explanations and hypothesis generation.
Enhances user experience with comprehensive data provenance tracking and visualization of analysis results.
- pages/Enhanced_Analysis.py +433 -0
pages/Enhanced_Analysis.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Enhanced Analysis Page for POLYMEROS
|
3 |
+
Advanced multi-modal spectroscopy analysis with modern ML architecture
|
4 |
+
"""
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from pathlib import Path
|
11 |
+
import io
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
# Import POLYMEROS components
|
15 |
+
import sys
|
16 |
+
import os
|
17 |
+
|
18 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "modules"))
|
19 |
+
|
20 |
+
from modules.transparent_ai import TransparentAIEngine, PredictionExplanation
|
21 |
+
from modules.enhanced_data import (
|
22 |
+
EnhancedDataManager,
|
23 |
+
ContextualSpectrum,
|
24 |
+
SpectralMetadata,
|
25 |
+
)
|
26 |
+
from modules.advanced_spectroscopy import MultiModalSpectroscopyEngine
|
27 |
+
from modules.modern_ml_architecture import (
|
28 |
+
ModernMLPipeline,
|
29 |
+
)
|
30 |
+
from modules.enhanced_data_pipeline import EnhancedDataPipeline
|
31 |
+
from core_logic import load_model, parse_spectrum_data
|
32 |
+
from config import MODEL_CONFIG, TARGET_LEN
|
33 |
+
|
34 |
+
# Removed unused preprocess_spectrum import
|
35 |
+
|
36 |
+
|
37 |
+
def init_enhanced_analysis():
|
38 |
+
"""Initialize enhanced analysis session state with new components"""
|
39 |
+
if "data_manager" not in st.session_state:
|
40 |
+
st.session_state.data_manager = EnhancedDataManager()
|
41 |
+
|
42 |
+
if "spectroscopy_engine" not in st.session_state:
|
43 |
+
st.session_state.spectroscopy_engine = MultiModalSpectroscopyEngine()
|
44 |
+
|
45 |
+
if "ml_pipeline" not in st.session_state:
|
46 |
+
st.session_state.ml_pipeline = ModernMLPipeline()
|
47 |
+
st.session_state.ml_pipeline.initialize_models()
|
48 |
+
|
49 |
+
if "data_pipeline" not in st.session_state:
|
50 |
+
st.session_state.data_pipeline = EnhancedDataPipeline()
|
51 |
+
|
52 |
+
if "transparent_ai" not in st.session_state:
|
53 |
+
st.session_state.transparent_ai = None
|
54 |
+
|
55 |
+
if "current_model" not in st.session_state:
|
56 |
+
st.session_state.current_model = None
|
57 |
+
|
58 |
+
if "analysis_results" not in st.session_state:
|
59 |
+
st.session_state.analysis_results = None
|
60 |
+
|
61 |
+
|
62 |
+
def load_enhanced_model(model_name: str):
|
63 |
+
"""Load model and initialize transparent AI engine"""
|
64 |
+
try:
|
65 |
+
model = load_model(model_name)
|
66 |
+
if model is not None:
|
67 |
+
st.session_state.current_model = model
|
68 |
+
st.session_state.transparent_ai = TransparentAIEngine(model)
|
69 |
+
return True
|
70 |
+
return False
|
71 |
+
except Exception as e:
|
72 |
+
st.error(f"Error loading model: {e}")
|
73 |
+
return False
|
74 |
+
|
75 |
+
|
76 |
+
def render_enhanced_file_upload():
|
77 |
+
"""Render enhanced file upload with metadata extraction"""
|
78 |
+
st.header("π Enhanced Spectrum Analysis")
|
79 |
+
|
80 |
+
uploaded_file = st.file_uploader(
|
81 |
+
"Upload spectrum file (.txt)",
|
82 |
+
type=["txt"],
|
83 |
+
help="Upload a Raman or FTIR spectrum in text format",
|
84 |
+
)
|
85 |
+
|
86 |
+
if uploaded_file is not None:
|
87 |
+
# Parse spectrum data
|
88 |
+
try:
|
89 |
+
content = uploaded_file.read().decode("utf-8")
|
90 |
+
x_data, y_data = parse_spectrum_data(content)
|
91 |
+
|
92 |
+
# Create enhanced spectrum with metadata
|
93 |
+
metadata = SpectralMetadata(
|
94 |
+
filename=uploaded_file.name,
|
95 |
+
instrument_type="Raman", # Default, could be detected from filename
|
96 |
+
data_quality_score=None,
|
97 |
+
)
|
98 |
+
|
99 |
+
spectrum = ContextualSpectrum(x_data, y_data, metadata)
|
100 |
+
|
101 |
+
# Get data quality assessment
|
102 |
+
data_manager = st.session_state.data_manager
|
103 |
+
quality_score = data_manager._assess_data_quality(y_data)
|
104 |
+
spectrum.metadata.data_quality_score = quality_score
|
105 |
+
|
106 |
+
# Display quality assessment
|
107 |
+
col1, col2, col3 = st.columns(3)
|
108 |
+
with col1:
|
109 |
+
st.metric("Data Points", len(x_data))
|
110 |
+
with col2:
|
111 |
+
st.metric("Quality Score", f"{quality_score:.2f}")
|
112 |
+
with col3:
|
113 |
+
quality_color = (
|
114 |
+
"π’"
|
115 |
+
if quality_score > 0.7
|
116 |
+
else "π‘" if quality_score > 0.4 else "π΄"
|
117 |
+
)
|
118 |
+
st.metric("Quality", f"{quality_color}")
|
119 |
+
|
120 |
+
# Get preprocessing recommendations
|
121 |
+
recommendations = data_manager.get_preprocessing_recommendations(spectrum)
|
122 |
+
|
123 |
+
st.subheader("Intelligent Preprocessing Recommendations")
|
124 |
+
rec_col1, rec_col2 = st.columns(2)
|
125 |
+
|
126 |
+
with rec_col1:
|
127 |
+
st.write("**Recommended settings:**")
|
128 |
+
for param, value in recommendations.items():
|
129 |
+
st.write(f"β’ {param}: {value}")
|
130 |
+
|
131 |
+
with rec_col2:
|
132 |
+
st.write("**Manual override:**")
|
133 |
+
do_baseline = st.checkbox(
|
134 |
+
"Baseline correction",
|
135 |
+
value=recommendations.get("do_baseline", True),
|
136 |
+
)
|
137 |
+
do_smooth = st.checkbox(
|
138 |
+
"Smoothing", value=recommendations.get("do_smooth", True)
|
139 |
+
)
|
140 |
+
do_normalize = st.checkbox(
|
141 |
+
"Normalization", value=recommendations.get("do_normalize", True)
|
142 |
+
)
|
143 |
+
|
144 |
+
# Apply preprocessing with tracking
|
145 |
+
preprocessing_params = {
|
146 |
+
"do_baseline": do_baseline,
|
147 |
+
"do_smooth": do_smooth,
|
148 |
+
"do_normalize": do_normalize,
|
149 |
+
"target_len": TARGET_LEN,
|
150 |
+
}
|
151 |
+
|
152 |
+
if st.button("Process and Analyze"):
|
153 |
+
with st.spinner("Processing spectrum with provenance tracking..."):
|
154 |
+
# Apply preprocessing with full tracking
|
155 |
+
processed_spectrum = data_manager.preprocess_with_tracking(
|
156 |
+
spectrum, **preprocessing_params
|
157 |
+
)
|
158 |
+
|
159 |
+
# Store processed spectrum
|
160 |
+
st.session_state.processed_spectrum = processed_spectrum
|
161 |
+
st.success("Spectrum processed with full provenance tracking!")
|
162 |
+
|
163 |
+
# Display provenance information
|
164 |
+
st.subheader("Processing Provenance")
|
165 |
+
for record in processed_spectrum.provenance:
|
166 |
+
with st.expander(f"Operation: {record.operation}"):
|
167 |
+
st.write(f"**Timestamp:** {record.timestamp}")
|
168 |
+
st.write(f"**Parameters:** {record.parameters}")
|
169 |
+
st.write(f"**Input hash:** {record.input_hash}")
|
170 |
+
st.write(f"**Output hash:** {record.output_hash}")
|
171 |
+
|
172 |
+
except Exception as e:
|
173 |
+
st.error(f"Error processing file: {e}")
|
174 |
+
|
175 |
+
|
176 |
+
def render_transparent_analysis():
|
177 |
+
"""Render transparent AI analysis with explanations"""
|
178 |
+
if "processed_spectrum" not in st.session_state:
|
179 |
+
st.info("Please upload and process a spectrum first.")
|
180 |
+
return
|
181 |
+
|
182 |
+
st.header("π§ Transparent AI Analysis")
|
183 |
+
|
184 |
+
# Model selection
|
185 |
+
model_names = list(MODEL_CONFIG.keys())
|
186 |
+
selected_model = st.selectbox("Select AI model:", model_names)
|
187 |
+
|
188 |
+
if st.session_state.current_model is None or st.button("Load Model"):
|
189 |
+
with st.spinner(f"Loading {selected_model} model..."):
|
190 |
+
if load_enhanced_model(selected_model):
|
191 |
+
st.success(f"Model {selected_model} loaded successfully!")
|
192 |
+
else:
|
193 |
+
st.error("Failed to load model")
|
194 |
+
return
|
195 |
+
|
196 |
+
if st.session_state.transparent_ai is not None:
|
197 |
+
spectrum = st.session_state.processed_spectrum
|
198 |
+
|
199 |
+
if st.button("Run Transparent Analysis"):
|
200 |
+
with st.spinner("Running comprehensive analysis..."):
|
201 |
+
# Prepare input tensor
|
202 |
+
y_processed = spectrum.y_data
|
203 |
+
x_input = torch.tensor(y_processed, dtype=torch.float32).unsqueeze(0)
|
204 |
+
|
205 |
+
# Get transparent explanation
|
206 |
+
explanation = st.session_state.transparent_ai.predict_with_explanation(
|
207 |
+
x_input, wavenumbers=spectrum.x_data
|
208 |
+
)
|
209 |
+
|
210 |
+
# Generate hypotheses
|
211 |
+
hypotheses = st.session_state.transparent_ai.generate_hypotheses(
|
212 |
+
explanation
|
213 |
+
)
|
214 |
+
|
215 |
+
# Store results
|
216 |
+
st.session_state.analysis_results = {
|
217 |
+
"explanation": explanation,
|
218 |
+
"hypotheses": hypotheses,
|
219 |
+
}
|
220 |
+
|
221 |
+
# Display results
|
222 |
+
render_analysis_results(explanation, hypotheses)
|
223 |
+
|
224 |
+
|
225 |
+
def render_analysis_results(explanation: PredictionExplanation, hypotheses: list):
|
226 |
+
"""Render comprehensive analysis results"""
|
227 |
+
st.subheader("π― Prediction Results")
|
228 |
+
|
229 |
+
# Main prediction
|
230 |
+
class_names = ["Stable", "Weathered"]
|
231 |
+
predicted_class = class_names[explanation.prediction]
|
232 |
+
|
233 |
+
col1, col2, col3 = st.columns(3)
|
234 |
+
with col1:
|
235 |
+
st.metric("Prediction", predicted_class)
|
236 |
+
with col2:
|
237 |
+
st.metric("Confidence", f"{explanation.confidence:.3f}")
|
238 |
+
with col3:
|
239 |
+
confidence_emoji = (
|
240 |
+
"π’"
|
241 |
+
if explanation.confidence_level == "HIGH"
|
242 |
+
else "π‘" if explanation.confidence_level == "MEDIUM" else "π΄"
|
243 |
+
)
|
244 |
+
st.metric("Level", f"{confidence_emoji} {explanation.confidence_level}")
|
245 |
+
|
246 |
+
# Probability distribution
|
247 |
+
st.subheader("π Probability Distribution")
|
248 |
+
prob_data = {"Class": class_names, "Probability": explanation.probabilities}
|
249 |
+
|
250 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
251 |
+
bars = ax.bar(prob_data["Class"], prob_data["Probability"])
|
252 |
+
ax.set_ylabel("Probability")
|
253 |
+
ax.set_title("Class Probabilities")
|
254 |
+
ax.set_ylim(0, 1)
|
255 |
+
|
256 |
+
# Color bars based on prediction
|
257 |
+
for i, bar in enumerate(bars):
|
258 |
+
if i == explanation.prediction:
|
259 |
+
bar.set_color("steelblue")
|
260 |
+
else:
|
261 |
+
bar.set_color("lightgray")
|
262 |
+
|
263 |
+
st.pyplot(fig)
|
264 |
+
|
265 |
+
# Reasoning chain
|
266 |
+
st.subheader("π AI Reasoning Chain")
|
267 |
+
for i, reasoning in enumerate(explanation.reasoning_chain):
|
268 |
+
st.write(f"{i+1}. {reasoning}")
|
269 |
+
|
270 |
+
# Feature importance
|
271 |
+
if explanation.feature_importance:
|
272 |
+
st.subheader("π― Feature Importance Analysis")
|
273 |
+
|
274 |
+
# Create feature importance plot
|
275 |
+
features = list(explanation.feature_importance.keys())
|
276 |
+
importances = list(explanation.feature_importance.values())
|
277 |
+
|
278 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
279 |
+
bars = ax.barh(features, importances)
|
280 |
+
ax.set_xlabel("Importance Score")
|
281 |
+
ax.set_title("Spectral Region Importance")
|
282 |
+
|
283 |
+
# Color bars based on importance
|
284 |
+
for bar, importance in zip(bars, importances):
|
285 |
+
if abs(importance) > 0.5:
|
286 |
+
bar.set_color("red")
|
287 |
+
elif abs(importance) > 0.3:
|
288 |
+
bar.set_color("orange")
|
289 |
+
else:
|
290 |
+
bar.set_color("lightblue")
|
291 |
+
|
292 |
+
plt.tight_layout()
|
293 |
+
st.pyplot(fig)
|
294 |
+
|
295 |
+
# Uncertainty analysis
|
296 |
+
st.subheader("π€ Uncertainty Analysis")
|
297 |
+
for source in explanation.uncertainty_sources:
|
298 |
+
st.write(f"β’ {source}")
|
299 |
+
|
300 |
+
# Confidence intervals
|
301 |
+
if explanation.confidence_intervals:
|
302 |
+
st.subheader("π Confidence Intervals")
|
303 |
+
for class_name, (lower, upper) in explanation.confidence_intervals.items():
|
304 |
+
st.write(f"**{class_name}:** [{lower:.3f}, {upper:.3f}]")
|
305 |
+
|
306 |
+
# AI-generated hypotheses
|
307 |
+
if hypotheses:
|
308 |
+
st.subheader("π§ͺ AI-Generated Scientific Hypotheses")
|
309 |
+
|
310 |
+
for i, hypothesis in enumerate(hypotheses):
|
311 |
+
with st.expander(f"Hypothesis {i+1}: {hypothesis.statement}"):
|
312 |
+
st.write(f"**Confidence:** {hypothesis.confidence:.3f}")
|
313 |
+
|
314 |
+
st.write("**Supporting Evidence:**")
|
315 |
+
for evidence in hypothesis.supporting_evidence:
|
316 |
+
st.write(f"β’ {evidence}")
|
317 |
+
|
318 |
+
st.write("**Testable Predictions:**")
|
319 |
+
for prediction in hypothesis.testable_predictions:
|
320 |
+
st.write(f"β’ {prediction}")
|
321 |
+
|
322 |
+
st.write("**Suggested Experiments:**")
|
323 |
+
for experiment in hypothesis.suggested_experiments:
|
324 |
+
st.write(f"β’ {experiment}")
|
325 |
+
|
326 |
+
|
327 |
+
def render_data_provenance():
|
328 |
+
"""Render data provenance and quality information"""
|
329 |
+
if "processed_spectrum" not in st.session_state:
|
330 |
+
st.info("No processed spectrum available.")
|
331 |
+
return
|
332 |
+
|
333 |
+
st.header("π Data Provenance & Quality")
|
334 |
+
|
335 |
+
spectrum = st.session_state.processed_spectrum
|
336 |
+
|
337 |
+
# Metadata display
|
338 |
+
st.subheader("π Spectrum Metadata")
|
339 |
+
metadata = spectrum.metadata
|
340 |
+
|
341 |
+
col1, col2 = st.columns(2)
|
342 |
+
with col1:
|
343 |
+
st.write(f"**Filename:** {metadata.filename}")
|
344 |
+
st.write(f"**Instrument:** {metadata.instrument_type}")
|
345 |
+
st.write(f"**Quality Score:** {metadata.data_quality_score:.3f}")
|
346 |
+
|
347 |
+
with col2:
|
348 |
+
if metadata.laser_wavelength:
|
349 |
+
st.write(f"**Laser Wavelength:** {metadata.laser_wavelength} nm")
|
350 |
+
if metadata.acquisition_date:
|
351 |
+
st.write(f"**Acquisition Date:** {metadata.acquisition_date}")
|
352 |
+
st.write(f"**Data Hash:** {spectrum.data_hash}")
|
353 |
+
|
354 |
+
# Provenance timeline
|
355 |
+
st.subheader("π Processing Timeline")
|
356 |
+
|
357 |
+
if spectrum.provenance:
|
358 |
+
for i, record in enumerate(spectrum.provenance):
|
359 |
+
with st.expander(
|
360 |
+
f"Step {i+1}: {record.operation} ({record.timestamp[:19]})"
|
361 |
+
):
|
362 |
+
st.write(f"**Operation:** {record.operation}")
|
363 |
+
st.write(f"**Operator:** {record.operator}")
|
364 |
+
st.write(f"**Parameters:**")
|
365 |
+
for param, value in record.parameters.items():
|
366 |
+
st.write(f" - {param}: {value}")
|
367 |
+
st.write(f"**Input Hash:** {record.input_hash}")
|
368 |
+
st.write(f"**Output Hash:** {record.output_hash}")
|
369 |
+
else:
|
370 |
+
st.info("No processing operations recorded yet.")
|
371 |
+
|
372 |
+
# Quality assessment details
|
373 |
+
st.subheader("π Quality Assessment Details")
|
374 |
+
|
375 |
+
if hasattr(spectrum, "quality_metrics"):
|
376 |
+
metrics = spectrum.quality_metrics
|
377 |
+
for metric, value in metrics.items():
|
378 |
+
st.write(f"**{metric}:** {value}")
|
379 |
+
else:
|
380 |
+
st.info("Run quality assessment to see detailed metrics.")
|
381 |
+
|
382 |
+
|
383 |
+
def main():
|
384 |
+
"""Main enhanced analysis interface"""
|
385 |
+
st.set_page_config(
|
386 |
+
page_title="POLYMEROS Enhanced Analysis", page_icon="π¬", layout="wide"
|
387 |
+
)
|
388 |
+
|
389 |
+
st.title("π¬ POLYMEROS Enhanced Analysis")
|
390 |
+
st.markdown("**Transparent AI with Explainability and Hypothesis Generation**")
|
391 |
+
|
392 |
+
# Initialize session
|
393 |
+
init_enhanced_analysis()
|
394 |
+
|
395 |
+
# Sidebar navigation
|
396 |
+
st.sidebar.title("π§ͺ Analysis Tools")
|
397 |
+
analysis_mode = st.sidebar.selectbox(
|
398 |
+
"Select analysis mode:",
|
399 |
+
[
|
400 |
+
"Spectrum Upload & Processing",
|
401 |
+
"Transparent AI Analysis",
|
402 |
+
"Data Provenance & Quality",
|
403 |
+
],
|
404 |
+
)
|
405 |
+
|
406 |
+
# Render selected mode
|
407 |
+
if analysis_mode == "Spectrum Upload & Processing":
|
408 |
+
render_enhanced_file_upload()
|
409 |
+
elif analysis_mode == "Transparent AI Analysis":
|
410 |
+
render_transparent_analysis()
|
411 |
+
elif analysis_mode == "Data Provenance & Quality":
|
412 |
+
render_data_provenance()
|
413 |
+
|
414 |
+
# Additional information
|
415 |
+
st.sidebar.markdown("---")
|
416 |
+
st.sidebar.markdown("**Enhanced Features:**")
|
417 |
+
st.sidebar.markdown("β’ Complete provenance tracking")
|
418 |
+
st.sidebar.markdown("β’ Intelligent preprocessing")
|
419 |
+
st.sidebar.markdown("β’ Uncertainty quantification")
|
420 |
+
st.sidebar.markdown("β’ AI hypothesis generation")
|
421 |
+
st.sidebar.markdown("β’ Explainable predictions")
|
422 |
+
|
423 |
+
# Display current analysis status
|
424 |
+
if st.session_state.analysis_results:
|
425 |
+
st.sidebar.success("β
Analysis completed")
|
426 |
+
elif "processed_spectrum" in st.session_state:
|
427 |
+
st.sidebar.info("π Spectrum processed")
|
428 |
+
else:
|
429 |
+
st.sidebar.info("π Ready for upload")
|
430 |
+
|
431 |
+
|
432 |
+
if __name__ == "__main__":
|
433 |
+
main()
|