Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
aecd727
1
Parent(s):
9fe46f4
(FEAT)[Implement Robust Training Management Backend]: Add training manager, config classes, data augmentation, metrics, and cross-validation utilities
Browse files- Developed 'TrainingManager' class to orchestrate training jobs, including job submission, tracking, and resource allocation.
- Defined 'TrainingConfig' and 'TrainingStatus' for flexible experiment configuration and state monitoring.
- Implemented multiple cross-validation strategies (KFold, StratifiedKFold, TimeSeriesSplit) for flexible ML evaluation.
- Added spectroscopy-specific metrics and spectral cosine similarity computation for domain-relevant model assessment.
- Integrated secure data loading, preprocessing, and augmentation logic to support various file formats and enforce data integrity.
- utils/training_manager.py +817 -0
utils/training_manager.py
ADDED
|
@@ -0,0 +1,817 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Training job management system for ML Hub functionality.
|
| 3 |
+
Handles asynchronous training jobs, progress tracking, and result management.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import json
|
| 9 |
+
import time
|
| 10 |
+
import uuid
|
| 11 |
+
import threading
|
| 12 |
+
import concurrent.futures
|
| 13 |
+
import multiprocessing
|
| 14 |
+
from datetime import datetime, timedelta
|
| 15 |
+
from dataclasses import dataclass, asdict, field
|
| 16 |
+
from enum import Enum
|
| 17 |
+
from typing import Dict, List, Optional, Callable, Any, Tuple
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import numpy as np
|
| 23 |
+
from torch.utils.data import TensorDataset, DataLoader
|
| 24 |
+
from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit
|
| 25 |
+
from sklearn.metrics import confusion_matrix, accuracy_score, f1_score
|
| 26 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 27 |
+
from scipy.signal import find_peaks
|
| 28 |
+
from scipy.spatial.distance import euclidean
|
| 29 |
+
|
| 30 |
+
# Add project-specific imports
|
| 31 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
| 32 |
+
from models.registry import choices as model_choices, build as build_model
|
| 33 |
+
from utils.preprocessing import preprocess_spectrum
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def spectral_cosine_similarity(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
| 37 |
+
"""Calculate cosine similarity between spectral predictions and true values"""
|
| 38 |
+
# Reshape if needed for cosine similarity calculation
|
| 39 |
+
if y_true.ndim == 1:
|
| 40 |
+
y_true = y_true.reshape(1, -1)
|
| 41 |
+
if y_pred.ndim == 1:
|
| 42 |
+
y_pred = y_pred.reshape(1, -1)
|
| 43 |
+
|
| 44 |
+
return float(cosine_similarity(y_true, y_pred)[0, 0])
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def peak_matching_score(
|
| 48 |
+
spectrum1: np.ndarray,
|
| 49 |
+
spectrum2: np.ndarray,
|
| 50 |
+
height_threshold: float = 0.1,
|
| 51 |
+
distance: int = 5,
|
| 52 |
+
) -> float:
|
| 53 |
+
"""Calculate peak matching score between two spectra"""
|
| 54 |
+
try:
|
| 55 |
+
# Find peaks in both spectra
|
| 56 |
+
peaks1, _ = find_peaks(spectrum1, height=height_threshold, distance=distance)
|
| 57 |
+
peaks2, _ = find_peaks(spectrum2, height=height_threshold, distance=distance)
|
| 58 |
+
|
| 59 |
+
if len(peaks1) == 0 or len(peaks2) == 0:
|
| 60 |
+
return 0.0
|
| 61 |
+
|
| 62 |
+
# Calculate matching peaks (within tolerance)
|
| 63 |
+
tolerance = 3 # wavenumber tolerance
|
| 64 |
+
matches = 0
|
| 65 |
+
|
| 66 |
+
for peak1 in peaks1:
|
| 67 |
+
for peak2 in peaks2:
|
| 68 |
+
if abs(peak1 - peak2) <= tolerance:
|
| 69 |
+
matches += 1
|
| 70 |
+
break
|
| 71 |
+
|
| 72 |
+
# Return normalized matching score
|
| 73 |
+
return matches / max(len(peaks1), len(peaks2))
|
| 74 |
+
except:
|
| 75 |
+
return 0.0
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def spectral_euclidean_distance(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
| 79 |
+
"""Calculate normalized Euclidean distance between spectra"""
|
| 80 |
+
try:
|
| 81 |
+
distance = euclidean(y_true.flatten(), y_pred.flatten())
|
| 82 |
+
# Normalize by the length of the spectrum
|
| 83 |
+
return distance / len(y_true.flatten())
|
| 84 |
+
except:
|
| 85 |
+
return float("inf")
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def calculate_spectroscopy_metrics(
|
| 89 |
+
y_true: np.ndarray, y_pred: np.ndarray, probabilities: Optional[np.ndarray] = None
|
| 90 |
+
) -> Dict[str, float]:
|
| 91 |
+
"""Calculate comprehensive spectroscopy-specific metrics"""
|
| 92 |
+
metrics = {}
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
# Standard classification metrics
|
| 96 |
+
metrics["accuracy"] = accuracy_score(y_true, y_pred)
|
| 97 |
+
metrics["f1_score"] = f1_score(y_true, y_pred, average="weighted")
|
| 98 |
+
|
| 99 |
+
# Spectroscopy-specific metrics
|
| 100 |
+
if probabilities is not None and len(probabilities.shape) > 1:
|
| 101 |
+
# For classification with probabilities, use cosine similarity on prob distributions
|
| 102 |
+
unique_classes = np.unique(y_true)
|
| 103 |
+
if len(unique_classes) > 1:
|
| 104 |
+
# Convert true labels to one-hot for similarity calculation
|
| 105 |
+
y_true_onehot = np.eye(len(unique_classes))[y_true]
|
| 106 |
+
metrics["cosine_similarity"] = float(
|
| 107 |
+
cosine_similarity(
|
| 108 |
+
y_true_onehot.mean(axis=0).reshape(1, -1),
|
| 109 |
+
probabilities.mean(axis=0).reshape(1, -1),
|
| 110 |
+
)[0, 0]
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Add bias audit metric (class distribution comparison)
|
| 114 |
+
unique_true, counts_true = np.unique(y_true, return_counts=True)
|
| 115 |
+
unique_pred, counts_pred = np.unique(y_pred, return_counts=True)
|
| 116 |
+
|
| 117 |
+
# Calculate distribution difference (Jensen-Shannon divergence approximation)
|
| 118 |
+
true_dist = counts_true / len(y_true)
|
| 119 |
+
pred_dist = np.zeros_like(true_dist)
|
| 120 |
+
|
| 121 |
+
for i, class_label in enumerate(unique_true):
|
| 122 |
+
if class_label in unique_pred:
|
| 123 |
+
pred_idx = np.where(unique_pred == class_label)[0][0]
|
| 124 |
+
pred_dist[i] = counts_pred[pred_idx] / len(y_pred)
|
| 125 |
+
|
| 126 |
+
# Simple distribution similarity (1 - average absolute difference)
|
| 127 |
+
metrics["distribution_similarity"] = 1.0 - np.mean(
|
| 128 |
+
np.abs(true_dist - pred_dist)
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Error calculating spectroscopy metrics: {e}")
|
| 133 |
+
# Return basic metrics
|
| 134 |
+
metrics = {
|
| 135 |
+
"accuracy": accuracy_score(y_true, y_pred) if len(y_true) > 0 else 0.0,
|
| 136 |
+
"f1_score": (
|
| 137 |
+
f1_score(y_true, y_pred, average="weighted") if len(y_true) > 0 else 0.0
|
| 138 |
+
),
|
| 139 |
+
"cosine_similarity": 0.0,
|
| 140 |
+
"distribution_similarity": 0.0,
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
return metrics
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def get_cv_splitter(strategy: str, n_splits: int = 10, random_state: int = 42):
|
| 147 |
+
"""Get cross-validation splitter based on strategy"""
|
| 148 |
+
if strategy == "stratified_kfold":
|
| 149 |
+
return StratifiedKFold(
|
| 150 |
+
n_splits=n_splits, shuffle=True, random_state=random_state
|
| 151 |
+
)
|
| 152 |
+
elif strategy == "kfold":
|
| 153 |
+
return KFold(n_splits=n_splits, shuffle=True, random_state=random_state)
|
| 154 |
+
elif strategy == "time_series_split":
|
| 155 |
+
return TimeSeriesSplit(n_splits=n_splits)
|
| 156 |
+
else:
|
| 157 |
+
# Default to stratified k-fold
|
| 158 |
+
return StratifiedKFold(
|
| 159 |
+
n_splits=n_splits, shuffle=True, random_state=random_state
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def augment_spectral_data(
|
| 164 |
+
X: np.ndarray,
|
| 165 |
+
y: np.ndarray,
|
| 166 |
+
noise_level: float = 0.01,
|
| 167 |
+
augmentation_factor: int = 2,
|
| 168 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 169 |
+
"""Augment spectral data with realistic noise and variations"""
|
| 170 |
+
if augmentation_factor <= 1:
|
| 171 |
+
return X, y
|
| 172 |
+
|
| 173 |
+
augmented_X = [X]
|
| 174 |
+
augmented_y = [y]
|
| 175 |
+
|
| 176 |
+
for i in range(augmentation_factor - 1):
|
| 177 |
+
# Add Gaussian noise
|
| 178 |
+
noise = np.random.normal(0, noise_level, X.shape)
|
| 179 |
+
X_noisy = X + noise
|
| 180 |
+
|
| 181 |
+
# Add baseline drift (common in spectroscopy)
|
| 182 |
+
baseline_drift = np.random.normal(0, noise_level * 0.5, (X.shape[0], 1))
|
| 183 |
+
X_drift = X_noisy + baseline_drift
|
| 184 |
+
|
| 185 |
+
# Add intensity scaling variation
|
| 186 |
+
intensity_scale = np.random.normal(1.0, 0.05, (X.shape[0], 1))
|
| 187 |
+
X_scaled = X_drift * intensity_scale
|
| 188 |
+
|
| 189 |
+
# Ensure no negative values
|
| 190 |
+
X_scaled = np.maximum(X_scaled, 0)
|
| 191 |
+
|
| 192 |
+
augmented_X.append(X_scaled)
|
| 193 |
+
augmented_y.append(y)
|
| 194 |
+
|
| 195 |
+
return np.vstack(augmented_X), np.hstack(augmented_y)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class TrainingStatus(Enum):
|
| 199 |
+
"""Training job status enumeration"""
|
| 200 |
+
|
| 201 |
+
PENDING = "pending"
|
| 202 |
+
RUNNING = "running"
|
| 203 |
+
COMPLETED = "completed"
|
| 204 |
+
FAILED = "failed"
|
| 205 |
+
CANCELLED = "cancelled"
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class CVStrategy(Enum):
|
| 209 |
+
"""Cross-validation strategy enumeration"""
|
| 210 |
+
|
| 211 |
+
STRATIFIED_KFOLD = "stratified_kfold"
|
| 212 |
+
KFOLD = "kfold"
|
| 213 |
+
TIME_SERIES_SPLIT = "time_series_split"
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
@dataclass
|
| 217 |
+
class TrainingConfig:
|
| 218 |
+
"""Training configuration parameters"""
|
| 219 |
+
|
| 220 |
+
model_name: str
|
| 221 |
+
dataset_path: str
|
| 222 |
+
target_len: int = 500
|
| 223 |
+
batch_size: int = 16
|
| 224 |
+
epochs: int = 10
|
| 225 |
+
learning_rate: float = 1e-3
|
| 226 |
+
num_folds: int = 10
|
| 227 |
+
baseline_correction: bool = True
|
| 228 |
+
smoothing: bool = True
|
| 229 |
+
normalization: bool = True
|
| 230 |
+
modality: str = "raman"
|
| 231 |
+
device: str = "auto" # auto, cpu, cuda
|
| 232 |
+
cv_strategy: str = "stratified_kfold" # New field for CV strategy
|
| 233 |
+
spectral_weight: float = 0.1 # Weight for spectroscopy-specific metrics
|
| 234 |
+
enable_augmentation: bool = False # Enable data augmentation
|
| 235 |
+
noise_level: float = 0.01 # Noise level for augmentation
|
| 236 |
+
|
| 237 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 238 |
+
"""Convert to dictionary for serialization"""
|
| 239 |
+
return asdict(self)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
@dataclass
|
| 243 |
+
class TrainingProgress:
|
| 244 |
+
"""Training progress tracking with enhanced metrics"""
|
| 245 |
+
|
| 246 |
+
current_fold: int = 0
|
| 247 |
+
total_folds: int = 10
|
| 248 |
+
current_epoch: int = 0
|
| 249 |
+
total_epochs: int = 10
|
| 250 |
+
current_loss: float = 0.0
|
| 251 |
+
current_accuracy: float = 0.0
|
| 252 |
+
fold_accuracies: List[float] = field(default_factory=list)
|
| 253 |
+
confusion_matrices: List[List[List[int]]] = field(default_factory=list)
|
| 254 |
+
spectroscopy_metrics: List[Dict[str, float]] = field(default_factory=list)
|
| 255 |
+
start_time: Optional[datetime] = None
|
| 256 |
+
end_time: Optional[datetime] = None
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
@dataclass
|
| 260 |
+
class TrainingJob:
|
| 261 |
+
"""Training job container"""
|
| 262 |
+
|
| 263 |
+
job_id: str
|
| 264 |
+
config: TrainingConfig
|
| 265 |
+
status: TrainingStatus = TrainingStatus.PENDING
|
| 266 |
+
progress: TrainingProgress = None
|
| 267 |
+
error_message: Optional[str] = None
|
| 268 |
+
created_at: datetime = None
|
| 269 |
+
started_at: Optional[datetime] = None
|
| 270 |
+
completed_at: Optional[datetime] = None
|
| 271 |
+
weights_path: Optional[str] = None
|
| 272 |
+
logs_path: Optional[str] = None
|
| 273 |
+
|
| 274 |
+
def __post_init__(self):
|
| 275 |
+
if self.progress is None:
|
| 276 |
+
self.progress = TrainingProgress(
|
| 277 |
+
total_folds=self.config.num_folds, total_epochs=self.config.epochs
|
| 278 |
+
)
|
| 279 |
+
if self.created_at is None:
|
| 280 |
+
self.created_at = datetime.now()
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
class TrainingManager:
|
| 284 |
+
"""Manager for training jobs with async execution and progress tracking"""
|
| 285 |
+
|
| 286 |
+
def __init__(
|
| 287 |
+
self,
|
| 288 |
+
max_workers: int = 2,
|
| 289 |
+
output_dir: str = "outputs",
|
| 290 |
+
use_multiprocessing: bool = True,
|
| 291 |
+
):
|
| 292 |
+
self.max_workers = max_workers
|
| 293 |
+
self.use_multiprocessing = use_multiprocessing
|
| 294 |
+
|
| 295 |
+
# Use ProcessPoolExecutor for CPU/GPU-bound tasks, ThreadPoolExecutor for I/O-bound
|
| 296 |
+
if use_multiprocessing:
|
| 297 |
+
# Limit workers to available CPU cores to prevent oversubscription
|
| 298 |
+
actual_workers = min(max_workers, multiprocessing.cpu_count())
|
| 299 |
+
self.executor = concurrent.futures.ProcessPoolExecutor(
|
| 300 |
+
max_workers=actual_workers
|
| 301 |
+
)
|
| 302 |
+
else:
|
| 303 |
+
self.executor = concurrent.futures.ThreadPoolExecutor(
|
| 304 |
+
max_workers=max_workers
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
self.jobs: Dict[str, TrainingJob] = {}
|
| 308 |
+
self.output_dir = Path(output_dir)
|
| 309 |
+
self.output_dir.mkdir(exist_ok=True)
|
| 310 |
+
(self.output_dir / "weights").mkdir(exist_ok=True)
|
| 311 |
+
(self.output_dir / "logs").mkdir(exist_ok=True)
|
| 312 |
+
|
| 313 |
+
# Progress callbacks for UI updates
|
| 314 |
+
self.progress_callbacks: Dict[str, List[Callable]] = {}
|
| 315 |
+
|
| 316 |
+
def generate_job_id(self) -> str:
|
| 317 |
+
"""Generate unique job ID"""
|
| 318 |
+
return f"train_{uuid.uuid4().hex[:8]}_{int(time.time())}"
|
| 319 |
+
|
| 320 |
+
def submit_training_job(
|
| 321 |
+
self, config: TrainingConfig, progress_callback: Optional[Callable] = None
|
| 322 |
+
) -> str:
|
| 323 |
+
"""Submit a new training job"""
|
| 324 |
+
job_id = self.generate_job_id()
|
| 325 |
+
job = TrainingJob(job_id=job_id, config=config)
|
| 326 |
+
|
| 327 |
+
# Set up output paths
|
| 328 |
+
job.weights_path = str(self.output_dir / "weights" / f"{job_id}_model.pth")
|
| 329 |
+
job.logs_path = str(self.output_dir / "logs" / f"{job_id}_log.json")
|
| 330 |
+
|
| 331 |
+
self.jobs[job_id] = job
|
| 332 |
+
|
| 333 |
+
# Register progress callback
|
| 334 |
+
if progress_callback:
|
| 335 |
+
if job_id not in self.progress_callbacks:
|
| 336 |
+
self.progress_callbacks[job_id] = []
|
| 337 |
+
self.progress_callbacks[job_id].append(progress_callback)
|
| 338 |
+
|
| 339 |
+
# Submit to thread pool
|
| 340 |
+
self.executor.submit(self._run_training_job, job)
|
| 341 |
+
|
| 342 |
+
return job_id
|
| 343 |
+
|
| 344 |
+
def _run_training_job(self, job: TrainingJob) -> None:
|
| 345 |
+
"""Execute training job (runs in separate thread)"""
|
| 346 |
+
try:
|
| 347 |
+
job.status = TrainingStatus.RUNNING
|
| 348 |
+
job.started_at = datetime.now()
|
| 349 |
+
job.progress.start_time = job.started_at
|
| 350 |
+
|
| 351 |
+
self._notify_progress(job.job_id, job)
|
| 352 |
+
|
| 353 |
+
# Device selection
|
| 354 |
+
device = self._get_device(job.config.device)
|
| 355 |
+
|
| 356 |
+
# Load and preprocess data
|
| 357 |
+
X, y = self._load_and_preprocess_data(job)
|
| 358 |
+
if X is None or y is None:
|
| 359 |
+
raise ValueError("Failed to load dataset")
|
| 360 |
+
|
| 361 |
+
# Set reproducibility
|
| 362 |
+
self._set_reproducibility()
|
| 363 |
+
|
| 364 |
+
# Run cross-validation training
|
| 365 |
+
self._run_cross_validation(job, X, y, device)
|
| 366 |
+
|
| 367 |
+
# Save final results
|
| 368 |
+
self._save_training_results(job)
|
| 369 |
+
|
| 370 |
+
job.status = TrainingStatus.COMPLETED
|
| 371 |
+
job.completed_at = datetime.now()
|
| 372 |
+
job.progress.end_time = job.completed_at
|
| 373 |
+
|
| 374 |
+
except Exception as e:
|
| 375 |
+
job.status = TrainingStatus.FAILED
|
| 376 |
+
job.error_message = str(e)
|
| 377 |
+
job.completed_at = datetime.now()
|
| 378 |
+
|
| 379 |
+
finally:
|
| 380 |
+
self._notify_progress(job.job_id, job)
|
| 381 |
+
|
| 382 |
+
def _get_device(self, device_preference: str) -> torch.device:
|
| 383 |
+
"""Get appropriate device for training"""
|
| 384 |
+
if device_preference == "auto":
|
| 385 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 386 |
+
elif device_preference == "cuda" and torch.cuda.is_available():
|
| 387 |
+
return torch.device("cuda")
|
| 388 |
+
else:
|
| 389 |
+
return torch.device("cpu")
|
| 390 |
+
|
| 391 |
+
def _load_and_preprocess_data(
|
| 392 |
+
self, job: TrainingJob
|
| 393 |
+
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
|
| 394 |
+
"""Load and preprocess dataset with enhanced validation and security"""
|
| 395 |
+
try:
|
| 396 |
+
config = job.config
|
| 397 |
+
dataset_path = Path(config.dataset_path)
|
| 398 |
+
|
| 399 |
+
# Enhanced path validation and security
|
| 400 |
+
if not dataset_path.exists():
|
| 401 |
+
raise FileNotFoundError(f"Dataset path not found: {dataset_path}")
|
| 402 |
+
|
| 403 |
+
# Validate dataset path is within allowed directories (security)
|
| 404 |
+
try:
|
| 405 |
+
dataset_path = dataset_path.resolve()
|
| 406 |
+
allowed_bases = [
|
| 407 |
+
Path("datasets").resolve(),
|
| 408 |
+
Path("data").resolve(),
|
| 409 |
+
Path("/tmp").resolve(),
|
| 410 |
+
]
|
| 411 |
+
if not any(
|
| 412 |
+
str(dataset_path).startswith(str(base)) for base in allowed_bases
|
| 413 |
+
):
|
| 414 |
+
raise ValueError(
|
| 415 |
+
f"Dataset path outside allowed directories: {dataset_path}"
|
| 416 |
+
)
|
| 417 |
+
except Exception as e:
|
| 418 |
+
print(f"Path validation error: {e}")
|
| 419 |
+
raise ValueError("Invalid dataset path")
|
| 420 |
+
|
| 421 |
+
# Load data from dataset directory
|
| 422 |
+
X, y = [], []
|
| 423 |
+
total_files = 0
|
| 424 |
+
processed_files = 0
|
| 425 |
+
max_files_per_class = 1000 # Limit to prevent memory issues
|
| 426 |
+
max_file_size = 10 * 1024 * 1024 # 10MB per file
|
| 427 |
+
|
| 428 |
+
# Look for data files in the dataset directory
|
| 429 |
+
for label_dir in dataset_path.iterdir():
|
| 430 |
+
if not label_dir.is_dir():
|
| 431 |
+
continue
|
| 432 |
+
|
| 433 |
+
label = 0 if "stable" in label_dir.name.lower() else 1
|
| 434 |
+
files_in_class = 0
|
| 435 |
+
|
| 436 |
+
# Support multiple file formats
|
| 437 |
+
file_patterns = ["*.txt", "*.csv", "*.json"]
|
| 438 |
+
|
| 439 |
+
for pattern in file_patterns:
|
| 440 |
+
for file_path in label_dir.glob(pattern):
|
| 441 |
+
total_files += 1
|
| 442 |
+
|
| 443 |
+
# Security: Check file size
|
| 444 |
+
if file_path.stat().st_size > max_file_size:
|
| 445 |
+
print(
|
| 446 |
+
f"Skipping large file: {file_path} ({file_path.stat().st_size} bytes)"
|
| 447 |
+
)
|
| 448 |
+
continue
|
| 449 |
+
|
| 450 |
+
# Limit files per class
|
| 451 |
+
if files_in_class >= max_files_per_class:
|
| 452 |
+
print(
|
| 453 |
+
f"Reached maximum files per class ({max_files_per_class}) for {label_dir.name}"
|
| 454 |
+
)
|
| 455 |
+
break
|
| 456 |
+
|
| 457 |
+
try:
|
| 458 |
+
# Load spectrum data based on file type
|
| 459 |
+
if file_path.suffix.lower() == ".txt":
|
| 460 |
+
data = np.loadtxt(file_path)
|
| 461 |
+
if data.ndim == 2 and data.shape[1] >= 2:
|
| 462 |
+
x_raw, y_raw = data[:, 0], data[:, 1]
|
| 463 |
+
elif data.ndim == 1:
|
| 464 |
+
# Single column data
|
| 465 |
+
x_raw = np.arange(len(data))
|
| 466 |
+
y_raw = data
|
| 467 |
+
else:
|
| 468 |
+
continue
|
| 469 |
+
|
| 470 |
+
elif file_path.suffix.lower() == ".csv":
|
| 471 |
+
import pandas as pd
|
| 472 |
+
|
| 473 |
+
df = pd.read_csv(file_path)
|
| 474 |
+
if df.shape[1] >= 2:
|
| 475 |
+
x_raw, y_raw = (
|
| 476 |
+
df.iloc[:, 0].values,
|
| 477 |
+
df.iloc[:, 1].values,
|
| 478 |
+
)
|
| 479 |
+
else:
|
| 480 |
+
x_raw = np.arange(len(df))
|
| 481 |
+
y_raw = df.iloc[:, 0].values
|
| 482 |
+
|
| 483 |
+
elif file_path.suffix.lower() == ".json":
|
| 484 |
+
with open(file_path, "r") as f:
|
| 485 |
+
data_dict = json.load(f)
|
| 486 |
+
if isinstance(data_dict, dict):
|
| 487 |
+
if "x" in data_dict and "y" in data_dict:
|
| 488 |
+
x_raw, y_raw = np.array(
|
| 489 |
+
data_dict["x"]
|
| 490 |
+
), np.array(data_dict["y"])
|
| 491 |
+
elif "spectrum" in data_dict:
|
| 492 |
+
y_raw = np.array(data_dict["spectrum"])
|
| 493 |
+
x_raw = np.arange(len(y_raw))
|
| 494 |
+
else:
|
| 495 |
+
continue
|
| 496 |
+
else:
|
| 497 |
+
continue
|
| 498 |
+
else:
|
| 499 |
+
continue
|
| 500 |
+
|
| 501 |
+
# Validate data integrity
|
| 502 |
+
if len(x_raw) != len(y_raw) or len(x_raw) < 10:
|
| 503 |
+
print(
|
| 504 |
+
f"Invalid data in file {file_path}: insufficient data points"
|
| 505 |
+
)
|
| 506 |
+
continue
|
| 507 |
+
|
| 508 |
+
# Check for NaN or infinite values
|
| 509 |
+
if np.any(np.isnan(y_raw)) or np.any(np.isinf(y_raw)):
|
| 510 |
+
print(
|
| 511 |
+
f"Invalid data in file {file_path}: NaN or infinite values"
|
| 512 |
+
)
|
| 513 |
+
continue
|
| 514 |
+
|
| 515 |
+
# Validate reasonable value ranges for spectroscopy
|
| 516 |
+
if np.min(y_raw) < -1000 or np.max(y_raw) > 1e6:
|
| 517 |
+
print(
|
| 518 |
+
f"Suspicious data values in file {file_path}: outside expected range"
|
| 519 |
+
)
|
| 520 |
+
continue
|
| 521 |
+
|
| 522 |
+
# Preprocess spectrum
|
| 523 |
+
_, y_processed = preprocess_spectrum(
|
| 524 |
+
x_raw,
|
| 525 |
+
y_raw,
|
| 526 |
+
modality=config.modality,
|
| 527 |
+
target_len=config.target_len,
|
| 528 |
+
do_baseline=config.baseline_correction,
|
| 529 |
+
do_smooth=config.smoothing,
|
| 530 |
+
do_normalize=config.normalization,
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
# Final validation of processed data
|
| 534 |
+
if (
|
| 535 |
+
y_processed is None
|
| 536 |
+
or len(y_processed) != config.target_len
|
| 537 |
+
):
|
| 538 |
+
print(f"Preprocessing failed for file {file_path}")
|
| 539 |
+
continue
|
| 540 |
+
|
| 541 |
+
X.append(y_processed)
|
| 542 |
+
y.append(label)
|
| 543 |
+
files_in_class += 1
|
| 544 |
+
processed_files += 1
|
| 545 |
+
|
| 546 |
+
except Exception as e:
|
| 547 |
+
print(f"Error processing file {file_path}: {e}")
|
| 548 |
+
continue
|
| 549 |
+
|
| 550 |
+
# Validate final dataset
|
| 551 |
+
if len(X) == 0:
|
| 552 |
+
raise ValueError("No valid data files found in dataset")
|
| 553 |
+
|
| 554 |
+
if len(X) < 10:
|
| 555 |
+
raise ValueError(
|
| 556 |
+
f"Insufficient data: only {len(X)} samples found (minimum 10 required)"
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
# Check class balance
|
| 560 |
+
unique_labels, counts = np.unique(y, return_counts=True)
|
| 561 |
+
if len(unique_labels) < 2:
|
| 562 |
+
raise ValueError("Dataset must contain at least 2 classes")
|
| 563 |
+
|
| 564 |
+
min_class_size = min(counts)
|
| 565 |
+
if min_class_size < 3:
|
| 566 |
+
raise ValueError(
|
| 567 |
+
f"Insufficient samples in one class: minimum {min_class_size} (need at least 3)"
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
print(f"Dataset loaded: {processed_files}/{total_files} files processed")
|
| 571 |
+
print(f"Class distribution: {dict(zip(unique_labels, counts))}")
|
| 572 |
+
|
| 573 |
+
return np.array(X, dtype=np.float32), np.array(y, dtype=np.int64)
|
| 574 |
+
|
| 575 |
+
except Exception as e:
|
| 576 |
+
print(f"Error loading dataset: {e}")
|
| 577 |
+
return None, None
|
| 578 |
+
|
| 579 |
+
def _set_reproducibility(self):
|
| 580 |
+
"""Set random seeds for reproducibility"""
|
| 581 |
+
SEED = 42
|
| 582 |
+
np.random.seed(SEED)
|
| 583 |
+
torch.manual_seed(SEED)
|
| 584 |
+
if torch.cuda.is_available():
|
| 585 |
+
torch.cuda.manual_seed_all(SEED)
|
| 586 |
+
torch.backends.cudnn.deterministic = True
|
| 587 |
+
torch.backends.cudnn.benchmark = False
|
| 588 |
+
|
| 589 |
+
def _run_cross_validation(
|
| 590 |
+
self, job: TrainingJob, X: np.ndarray, y: np.ndarray, device: torch.device
|
| 591 |
+
):
|
| 592 |
+
"""Run configurable cross-validation training with spectroscopy metrics"""
|
| 593 |
+
config = job.config
|
| 594 |
+
|
| 595 |
+
# Apply data augmentation if enabled
|
| 596 |
+
if config.enable_augmentation:
|
| 597 |
+
X, y = augment_spectral_data(
|
| 598 |
+
X, y, noise_level=config.noise_level, augmentation_factor=2
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
# Get appropriate CV splitter
|
| 602 |
+
cv_splitter = get_cv_splitter(config.cv_strategy, config.num_folds)
|
| 603 |
+
|
| 604 |
+
fold_accuracies = []
|
| 605 |
+
confusion_matrices = []
|
| 606 |
+
spectroscopy_metrics = []
|
| 607 |
+
|
| 608 |
+
for fold, (train_idx, val_idx) in enumerate(cv_splitter.split(X, y), 1):
|
| 609 |
+
job.progress.current_fold = fold
|
| 610 |
+
job.progress.current_epoch = 0
|
| 611 |
+
|
| 612 |
+
# Prepare data
|
| 613 |
+
X_train, X_val = X[train_idx], X[val_idx]
|
| 614 |
+
y_train, y_val = y[train_idx], y[val_idx]
|
| 615 |
+
|
| 616 |
+
train_loader = DataLoader(
|
| 617 |
+
TensorDataset(
|
| 618 |
+
torch.tensor(X_train, dtype=torch.float32),
|
| 619 |
+
torch.tensor(y_train, dtype=torch.long),
|
| 620 |
+
),
|
| 621 |
+
batch_size=config.batch_size,
|
| 622 |
+
shuffle=True,
|
| 623 |
+
)
|
| 624 |
+
val_loader = DataLoader(
|
| 625 |
+
TensorDataset(
|
| 626 |
+
torch.tensor(X_val, dtype=torch.float32),
|
| 627 |
+
torch.tensor(y_val, dtype=torch.long),
|
| 628 |
+
),
|
| 629 |
+
batch_size=config.batch_size,
|
| 630 |
+
shuffle=False,
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
# Initialize model
|
| 634 |
+
model = build_model(config.model_name, config.target_len).to(device)
|
| 635 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
|
| 636 |
+
criterion = nn.CrossEntropyLoss()
|
| 637 |
+
|
| 638 |
+
# Training loop
|
| 639 |
+
for epoch in range(config.epochs):
|
| 640 |
+
job.progress.current_epoch = epoch + 1
|
| 641 |
+
model.train()
|
| 642 |
+
running_loss = 0.0
|
| 643 |
+
correct = 0
|
| 644 |
+
total = 0
|
| 645 |
+
|
| 646 |
+
for inputs, labels in train_loader:
|
| 647 |
+
inputs = inputs.unsqueeze(1).to(device)
|
| 648 |
+
labels = labels.to(device)
|
| 649 |
+
|
| 650 |
+
optimizer.zero_grad()
|
| 651 |
+
outputs = model(inputs)
|
| 652 |
+
loss = criterion(outputs, labels)
|
| 653 |
+
loss.backward()
|
| 654 |
+
optimizer.step()
|
| 655 |
+
|
| 656 |
+
running_loss += loss.item()
|
| 657 |
+
_, predicted = torch.max(outputs.data, 1)
|
| 658 |
+
total += labels.size(0)
|
| 659 |
+
correct += (predicted == labels).sum().item()
|
| 660 |
+
|
| 661 |
+
job.progress.current_loss = running_loss / len(train_loader)
|
| 662 |
+
job.progress.current_accuracy = correct / total
|
| 663 |
+
|
| 664 |
+
self._notify_progress(job.job_id, job)
|
| 665 |
+
|
| 666 |
+
# Validation with comprehensive metrics
|
| 667 |
+
model.eval()
|
| 668 |
+
val_predictions = []
|
| 669 |
+
val_true = []
|
| 670 |
+
val_probabilities = []
|
| 671 |
+
|
| 672 |
+
with torch.no_grad():
|
| 673 |
+
for inputs, labels in val_loader:
|
| 674 |
+
inputs = inputs.unsqueeze(1).to(device)
|
| 675 |
+
outputs = model(inputs)
|
| 676 |
+
probabilities = torch.softmax(outputs, dim=1)
|
| 677 |
+
_, predicted = torch.max(outputs, 1)
|
| 678 |
+
|
| 679 |
+
val_predictions.extend(predicted.cpu().numpy())
|
| 680 |
+
val_true.extend(labels.numpy())
|
| 681 |
+
val_probabilities.extend(probabilities.cpu().numpy())
|
| 682 |
+
|
| 683 |
+
# Calculate standard metrics
|
| 684 |
+
fold_accuracy = accuracy_score(val_true, val_predictions)
|
| 685 |
+
fold_cm = confusion_matrix(val_true, val_predictions).tolist()
|
| 686 |
+
|
| 687 |
+
# Calculate spectroscopy-specific metrics
|
| 688 |
+
val_probabilities = np.array(val_probabilities)
|
| 689 |
+
spectro_metrics = calculate_spectroscopy_metrics(
|
| 690 |
+
np.array(val_true), np.array(val_predictions), val_probabilities
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
fold_accuracies.append(fold_accuracy)
|
| 694 |
+
confusion_matrices.append(fold_cm)
|
| 695 |
+
spectroscopy_metrics.append(spectro_metrics)
|
| 696 |
+
|
| 697 |
+
# Save best model weights (from last fold for now)
|
| 698 |
+
if fold == config.num_folds:
|
| 699 |
+
torch.save(model.state_dict(), job.weights_path)
|
| 700 |
+
|
| 701 |
+
job.progress.fold_accuracies = fold_accuracies
|
| 702 |
+
job.progress.confusion_matrices = confusion_matrices
|
| 703 |
+
job.progress.spectroscopy_metrics = spectroscopy_metrics
|
| 704 |
+
|
| 705 |
+
def _save_training_results(self, job: TrainingJob):
|
| 706 |
+
"""Save training results and logs with enhanced metrics"""
|
| 707 |
+
# Calculate comprehensive summary metrics
|
| 708 |
+
spectro_summary = {}
|
| 709 |
+
if job.progress.spectroscopy_metrics:
|
| 710 |
+
# Average across all folds for each metric
|
| 711 |
+
metric_keys = job.progress.spectroscopy_metrics[0].keys()
|
| 712 |
+
for key in metric_keys:
|
| 713 |
+
values = [
|
| 714 |
+
fold_metrics.get(key, 0.0)
|
| 715 |
+
for fold_metrics in job.progress.spectroscopy_metrics
|
| 716 |
+
]
|
| 717 |
+
spectro_summary[f"mean_{key}"] = float(np.mean(values))
|
| 718 |
+
spectro_summary[f"std_{key}"] = float(np.std(values))
|
| 719 |
+
|
| 720 |
+
results = {
|
| 721 |
+
"job_id": job.job_id,
|
| 722 |
+
"config": job.config.to_dict(),
|
| 723 |
+
"status": job.status.value,
|
| 724 |
+
"created_at": job.created_at.isoformat(),
|
| 725 |
+
"started_at": job.started_at.isoformat() if job.started_at else None,
|
| 726 |
+
"completed_at": job.completed_at.isoformat() if job.completed_at else None,
|
| 727 |
+
"progress": {
|
| 728 |
+
"fold_accuracies": job.progress.fold_accuracies,
|
| 729 |
+
"confusion_matrices": job.progress.confusion_matrices,
|
| 730 |
+
"spectroscopy_metrics": job.progress.spectroscopy_metrics,
|
| 731 |
+
"mean_accuracy": (
|
| 732 |
+
np.mean(job.progress.fold_accuracies)
|
| 733 |
+
if job.progress.fold_accuracies
|
| 734 |
+
else 0.0
|
| 735 |
+
),
|
| 736 |
+
"std_accuracy": (
|
| 737 |
+
np.std(job.progress.fold_accuracies)
|
| 738 |
+
if job.progress.fold_accuracies
|
| 739 |
+
else 0.0
|
| 740 |
+
),
|
| 741 |
+
"spectroscopy_summary": spectro_summary,
|
| 742 |
+
},
|
| 743 |
+
"weights_path": job.weights_path,
|
| 744 |
+
"error_message": job.error_message,
|
| 745 |
+
}
|
| 746 |
+
|
| 747 |
+
with open(job.logs_path, "w") as f:
|
| 748 |
+
json.dump(results, f, indent=2)
|
| 749 |
+
|
| 750 |
+
def _notify_progress(self, job_id: str, job: TrainingJob):
|
| 751 |
+
"""Notify registered callbacks about progress updates"""
|
| 752 |
+
if job_id in self.progress_callbacks:
|
| 753 |
+
for callback in self.progress_callbacks[job_id]:
|
| 754 |
+
try:
|
| 755 |
+
callback(job)
|
| 756 |
+
except Exception as e:
|
| 757 |
+
print(f"Error in progress callback: {e}")
|
| 758 |
+
|
| 759 |
+
def get_job_status(self, job_id: str) -> Optional[TrainingJob]:
|
| 760 |
+
"""Get current status of a training job"""
|
| 761 |
+
return self.jobs.get(job_id)
|
| 762 |
+
|
| 763 |
+
def list_jobs(
|
| 764 |
+
self, status_filter: Optional[TrainingStatus] = None
|
| 765 |
+
) -> List[TrainingJob]:
|
| 766 |
+
"""List all jobs, optionally filtered by status"""
|
| 767 |
+
jobs = list(self.jobs.values())
|
| 768 |
+
if status_filter:
|
| 769 |
+
jobs = [job for job in jobs if job.status == status_filter]
|
| 770 |
+
return sorted(jobs, key=lambda j: j.created_at, reverse=True)
|
| 771 |
+
|
| 772 |
+
def cancel_job(self, job_id: str) -> bool:
|
| 773 |
+
"""Cancel a running job"""
|
| 774 |
+
job = self.jobs.get(job_id)
|
| 775 |
+
if job and job.status == TrainingStatus.RUNNING:
|
| 776 |
+
job.status = TrainingStatus.CANCELLED
|
| 777 |
+
job.completed_at = datetime.now()
|
| 778 |
+
# Note: This is a simple cancellation - actual thread termination is more complex
|
| 779 |
+
return True
|
| 780 |
+
return False
|
| 781 |
+
|
| 782 |
+
def cleanup_old_jobs(self, max_age_hours: int = 24):
|
| 783 |
+
"""Clean up old completed/failed jobs"""
|
| 784 |
+
cutoff_time = datetime.now() - timedelta(hours=max_age_hours)
|
| 785 |
+
to_remove = []
|
| 786 |
+
|
| 787 |
+
for job_id, job in self.jobs.items():
|
| 788 |
+
if (
|
| 789 |
+
job.status
|
| 790 |
+
in [
|
| 791 |
+
TrainingStatus.COMPLETED,
|
| 792 |
+
TrainingStatus.FAILED,
|
| 793 |
+
TrainingStatus.CANCELLED,
|
| 794 |
+
]
|
| 795 |
+
and job.completed_at
|
| 796 |
+
and job.completed_at < cutoff_time
|
| 797 |
+
):
|
| 798 |
+
to_remove.append(job_id)
|
| 799 |
+
|
| 800 |
+
for job_id in to_remove:
|
| 801 |
+
del self.jobs[job_id]
|
| 802 |
+
|
| 803 |
+
def shutdown(self):
|
| 804 |
+
"""Shutdown the training manager"""
|
| 805 |
+
self.executor.shutdown(wait=True)
|
| 806 |
+
|
| 807 |
+
|
| 808 |
+
# Global training manager instance
|
| 809 |
+
_training_manager = None
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
def get_training_manager() -> TrainingManager:
|
| 813 |
+
"""Get global training manager instance"""
|
| 814 |
+
global _training_manager
|
| 815 |
+
if _training_manager is None:
|
| 816 |
+
_training_manager = TrainingManager()
|
| 817 |
+
return _training_manager
|