Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
9fe46f4
1
Parent(s):
4dd9134
(FEAT)[Create Model Training UI Component]: Introduce comprehensive UI for model training and experiment management
Browse files- Added a new module dedicated to rendering the model training interface, enabling users to configure, launch, and track ML experiments.
- Established a code structure for future expansion, including support for job status monitoring, dataset selection, and advanced configuration.
- Provided foundation for interactive feedback and integration with backend training manager.
- modules/training_ui.py +1035 -0
modules/training_ui.py
ADDED
@@ -0,0 +1,1035 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Training UI components for the ML Hub functionality.
|
3 |
+
Provides interface for model training, dataset management, and progress tracking.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
import torch
|
9 |
+
import streamlit as st
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import plotly.graph_objects as go
|
13 |
+
from plotly.subplots import make_subplots
|
14 |
+
from pathlib import Path
|
15 |
+
from typing import Dict, List, Optional
|
16 |
+
import json
|
17 |
+
from datetime import datetime, timedelta
|
18 |
+
|
19 |
+
from models.registry import choices as model_choices, get_model_info
|
20 |
+
from utils.training_manager import (
|
21 |
+
get_training_manager,
|
22 |
+
TrainingConfig,
|
23 |
+
TrainingStatus,
|
24 |
+
TrainingJob,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def render_training_tab():
|
29 |
+
"""Render the main training interface tab"""
|
30 |
+
st.markdown("## 🎯 Model Training Hub")
|
31 |
+
st.markdown(
|
32 |
+
"Train any model from the registry on your datasets with real-time progress tracking."
|
33 |
+
)
|
34 |
+
|
35 |
+
# Create columns for layout
|
36 |
+
config_col, status_col = st.columns([1, 1])
|
37 |
+
|
38 |
+
with config_col:
|
39 |
+
render_training_configuration()
|
40 |
+
|
41 |
+
with status_col:
|
42 |
+
render_training_status()
|
43 |
+
|
44 |
+
# Full-width progress and results section
|
45 |
+
st.markdown("---")
|
46 |
+
render_training_progress()
|
47 |
+
|
48 |
+
st.markdown("---")
|
49 |
+
render_training_history()
|
50 |
+
|
51 |
+
|
52 |
+
def render_training_configuration():
|
53 |
+
"""Render training configuration panel"""
|
54 |
+
st.markdown("### ⚙️ Training Configuration")
|
55 |
+
|
56 |
+
with st.expander("Model Selection", expanded=True):
|
57 |
+
# Model selection
|
58 |
+
available_models = model_choices()
|
59 |
+
selected_model = st.selectbox(
|
60 |
+
"Select Model Architecture",
|
61 |
+
available_models,
|
62 |
+
help="Choose from available model architectures in the registry",
|
63 |
+
)
|
64 |
+
|
65 |
+
# Store in session state
|
66 |
+
st.session_state["selected_model"] = selected_model
|
67 |
+
|
68 |
+
# Display model info
|
69 |
+
if selected_model:
|
70 |
+
try:
|
71 |
+
model_info = get_model_info(selected_model)
|
72 |
+
st.info(
|
73 |
+
f"**{selected_model}**: {model_info.get('description', 'No description available')}"
|
74 |
+
)
|
75 |
+
|
76 |
+
# Model specs
|
77 |
+
col1, col2 = st.columns(2)
|
78 |
+
with col1:
|
79 |
+
st.metric("Parameters", model_info.get("parameters", "Unknown"))
|
80 |
+
st.metric("Speed", model_info.get("speed", "Unknown"))
|
81 |
+
with col2:
|
82 |
+
if "performance" in model_info:
|
83 |
+
perf = model_info["performance"]
|
84 |
+
st.metric("Accuracy", f"{perf.get('accuracy', 0):.3f}")
|
85 |
+
st.metric("F1 Score", f"{perf.get('f1_score', 0):.3f}")
|
86 |
+
except KeyError:
|
87 |
+
st.warning(f"Model info not available for {selected_model}")
|
88 |
+
|
89 |
+
with st.expander("Dataset Selection", expanded=True):
|
90 |
+
render_dataset_selection()
|
91 |
+
|
92 |
+
with st.expander("Training Parameters", expanded=True):
|
93 |
+
render_training_parameters()
|
94 |
+
|
95 |
+
# Training action button
|
96 |
+
st.markdown("---")
|
97 |
+
if st.button("🚀 Start Training", type="primary", use_container_width=True):
|
98 |
+
start_training_job()
|
99 |
+
|
100 |
+
|
101 |
+
def render_dataset_selection():
|
102 |
+
"""Render dataset selection and upload interface"""
|
103 |
+
st.markdown("#### Dataset Management")
|
104 |
+
|
105 |
+
# Dataset source selection
|
106 |
+
dataset_source = st.radio(
|
107 |
+
"Dataset Source",
|
108 |
+
["Upload New Dataset", "Use Existing Dataset"],
|
109 |
+
horizontal=True,
|
110 |
+
)
|
111 |
+
|
112 |
+
if dataset_source == "Upload New Dataset":
|
113 |
+
render_dataset_upload()
|
114 |
+
else:
|
115 |
+
render_existing_dataset_selection()
|
116 |
+
|
117 |
+
|
118 |
+
def render_dataset_upload():
|
119 |
+
"""Render dataset upload interface"""
|
120 |
+
st.markdown("##### Upload Dataset")
|
121 |
+
|
122 |
+
uploaded_files = st.file_uploader(
|
123 |
+
"Upload spectrum files (.txt, .csv, .json)",
|
124 |
+
accept_multiple_files=True,
|
125 |
+
type=["txt", "csv", "json"],
|
126 |
+
help="Upload multiple spectrum files. Organize them in folders named 'stable' and 'weathered' or label them accordingly.",
|
127 |
+
)
|
128 |
+
|
129 |
+
if uploaded_files:
|
130 |
+
st.success(f"✅ {len(uploaded_files)} files uploaded")
|
131 |
+
|
132 |
+
# Dataset organization
|
133 |
+
st.markdown("##### Dataset Organization")
|
134 |
+
|
135 |
+
dataset_name = st.text_input(
|
136 |
+
"Dataset Name",
|
137 |
+
placeholder="e.g., my_polymer_dataset",
|
138 |
+
help="Name for your dataset (will create a folder)",
|
139 |
+
)
|
140 |
+
|
141 |
+
# File labeling
|
142 |
+
st.markdown("**Label your files:**")
|
143 |
+
file_labels = {}
|
144 |
+
|
145 |
+
for i, file in enumerate(uploaded_files[:10]): # Limit display for performance
|
146 |
+
col1, col2 = st.columns([2, 1])
|
147 |
+
with col1:
|
148 |
+
st.text(file.name)
|
149 |
+
with col2:
|
150 |
+
file_labels[file.name] = st.selectbox(
|
151 |
+
f"Label for {file.name}", ["stable", "weathered"], key=f"label_{i}"
|
152 |
+
)
|
153 |
+
|
154 |
+
if len(uploaded_files) > 10:
|
155 |
+
st.info(
|
156 |
+
f"Showing first 10 files. {len(uploaded_files) - 10} more files will use default labeling based on filename."
|
157 |
+
)
|
158 |
+
|
159 |
+
if st.button("💾 Save Dataset") and dataset_name:
|
160 |
+
save_uploaded_dataset(uploaded_files, dataset_name, file_labels)
|
161 |
+
|
162 |
+
|
163 |
+
def render_existing_dataset_selection():
|
164 |
+
"""Render existing dataset selection"""
|
165 |
+
st.markdown("##### Available Datasets")
|
166 |
+
|
167 |
+
# Scan for existing datasets
|
168 |
+
datasets_dir = Path("datasets")
|
169 |
+
if datasets_dir.exists():
|
170 |
+
available_datasets = [d.name for d in datasets_dir.iterdir() if d.is_dir()]
|
171 |
+
|
172 |
+
if available_datasets:
|
173 |
+
selected_dataset = st.selectbox(
|
174 |
+
"Select Dataset",
|
175 |
+
available_datasets,
|
176 |
+
help="Choose from previously uploaded or existing datasets",
|
177 |
+
)
|
178 |
+
|
179 |
+
if selected_dataset:
|
180 |
+
st.session_state["selected_dataset"] = str(
|
181 |
+
datasets_dir / selected_dataset
|
182 |
+
)
|
183 |
+
display_dataset_info(datasets_dir / selected_dataset)
|
184 |
+
else:
|
185 |
+
st.warning("No datasets found. Please upload a dataset first.")
|
186 |
+
else:
|
187 |
+
st.warning("Datasets directory not found. Please upload a dataset first.")
|
188 |
+
|
189 |
+
|
190 |
+
def display_dataset_info(dataset_path: Path):
|
191 |
+
"""Display information about selected dataset"""
|
192 |
+
if not dataset_path.exists():
|
193 |
+
return
|
194 |
+
|
195 |
+
# Count files by category
|
196 |
+
file_counts = {}
|
197 |
+
total_files = 0
|
198 |
+
|
199 |
+
for category_dir in dataset_path.iterdir():
|
200 |
+
if category_dir.is_dir():
|
201 |
+
count = (
|
202 |
+
len(list(category_dir.glob("*.txt")))
|
203 |
+
+ len(list(category_dir.glob("*.csv")))
|
204 |
+
+ len(list(category_dir.glob("*.json")))
|
205 |
+
)
|
206 |
+
file_counts[category_dir.name] = count
|
207 |
+
total_files += count
|
208 |
+
|
209 |
+
if file_counts:
|
210 |
+
st.info(f"**Dataset**: {dataset_path.name}")
|
211 |
+
|
212 |
+
col1, col2 = st.columns(2)
|
213 |
+
with col1:
|
214 |
+
st.metric("Total Files", total_files)
|
215 |
+
with col2:
|
216 |
+
st.metric("Categories", len(file_counts))
|
217 |
+
|
218 |
+
# Display breakdown
|
219 |
+
for category, count in file_counts.items():
|
220 |
+
st.text(f"• {category}: {count} files")
|
221 |
+
|
222 |
+
|
223 |
+
def render_training_parameters():
|
224 |
+
"""Render training parameter configuration with enhanced options"""
|
225 |
+
st.markdown("#### Training Parameters")
|
226 |
+
|
227 |
+
col1, col2 = st.columns(2)
|
228 |
+
|
229 |
+
with col1:
|
230 |
+
epochs = st.number_input("Epochs", min_value=1, max_value=100, value=10)
|
231 |
+
batch_size = st.selectbox("Batch Size", [8, 16, 32, 64], index=1)
|
232 |
+
learning_rate = st.select_slider(
|
233 |
+
"Learning Rate",
|
234 |
+
options=[1e-4, 5e-4, 1e-3, 5e-3, 1e-2],
|
235 |
+
value=1e-3,
|
236 |
+
format_func=lambda x: f"{x:.0e}",
|
237 |
+
)
|
238 |
+
|
239 |
+
with col2:
|
240 |
+
num_folds = st.number_input(
|
241 |
+
"Cross-Validation Folds", min_value=3, max_value=10, value=10
|
242 |
+
)
|
243 |
+
target_len = st.number_input(
|
244 |
+
"Target Length", min_value=100, max_value=1000, value=500
|
245 |
+
)
|
246 |
+
modality = st.selectbox("Modality", ["raman", "ftir"], index=0)
|
247 |
+
|
248 |
+
# Advanced Cross-Validation Options
|
249 |
+
st.markdown("**Cross-Validation Strategy**")
|
250 |
+
cv_strategy = st.selectbox(
|
251 |
+
"CV Strategy",
|
252 |
+
["stratified_kfold", "kfold", "time_series_split"],
|
253 |
+
index=0,
|
254 |
+
help="Choose CV strategy: Stratified K-Fold (recommended for balanced datasets), K-Fold (for any dataset), Time Series Split (for temporal data)",
|
255 |
+
)
|
256 |
+
|
257 |
+
# Data Augmentation Options
|
258 |
+
st.markdown("**Data Augmentation**")
|
259 |
+
col1, col2 = st.columns(2)
|
260 |
+
|
261 |
+
with col1:
|
262 |
+
enable_augmentation = st.checkbox(
|
263 |
+
"Enable Spectral Augmentation",
|
264 |
+
value=False,
|
265 |
+
help="Add realistic noise and variations to improve model robustness",
|
266 |
+
)
|
267 |
+
with col2:
|
268 |
+
noise_level = st.slider(
|
269 |
+
"Noise Level",
|
270 |
+
min_value=0.001,
|
271 |
+
max_value=0.05,
|
272 |
+
value=0.01,
|
273 |
+
step=0.001,
|
274 |
+
disabled=not enable_augmentation,
|
275 |
+
help="Amount of Gaussian noise to add for augmentation",
|
276 |
+
)
|
277 |
+
|
278 |
+
# Spectroscopy-Specific Options
|
279 |
+
st.markdown("**Spectroscopy-Specific Settings**")
|
280 |
+
spectral_weight = st.slider(
|
281 |
+
"Spectral Metrics Weight",
|
282 |
+
min_value=0.0,
|
283 |
+
max_value=1.0,
|
284 |
+
value=0.1,
|
285 |
+
step=0.05,
|
286 |
+
help="Weight for spectroscopy-specific metrics (cosine similarity, peak matching)",
|
287 |
+
)
|
288 |
+
|
289 |
+
# Preprocessing options
|
290 |
+
st.markdown("**Preprocessing Options**")
|
291 |
+
col1, col2, col3 = st.columns(3)
|
292 |
+
|
293 |
+
with col1:
|
294 |
+
baseline_correction = st.checkbox("Baseline Correction", value=True)
|
295 |
+
with col2:
|
296 |
+
smoothing = st.checkbox("Smoothing", value=True)
|
297 |
+
with col3:
|
298 |
+
normalization = st.checkbox("Normalization", value=True)
|
299 |
+
|
300 |
+
# Device selection
|
301 |
+
device_options = ["auto", "cpu"]
|
302 |
+
if torch.cuda.is_available():
|
303 |
+
device_options.append("cuda")
|
304 |
+
|
305 |
+
device = st.selectbox("Device", device_options, index=0)
|
306 |
+
|
307 |
+
# Store parameters in session state
|
308 |
+
st.session_state.update(
|
309 |
+
{
|
310 |
+
"train_epochs": epochs,
|
311 |
+
"train_batch_size": batch_size,
|
312 |
+
"train_learning_rate": learning_rate,
|
313 |
+
"train_num_folds": num_folds,
|
314 |
+
"train_target_len": target_len,
|
315 |
+
"train_modality": modality,
|
316 |
+
"train_cv_strategy": cv_strategy,
|
317 |
+
"train_enable_augmentation": enable_augmentation,
|
318 |
+
"train_noise_level": noise_level,
|
319 |
+
"train_spectral_weight": spectral_weight,
|
320 |
+
"train_baseline_correction": baseline_correction,
|
321 |
+
"train_smoothing": smoothing,
|
322 |
+
"train_normalization": normalization,
|
323 |
+
"train_device": device,
|
324 |
+
}
|
325 |
+
)
|
326 |
+
|
327 |
+
|
328 |
+
def render_training_status():
|
329 |
+
"""Render training status and active jobs"""
|
330 |
+
st.markdown("### 📊 Training Status")
|
331 |
+
|
332 |
+
training_manager = get_training_manager()
|
333 |
+
|
334 |
+
# Active jobs
|
335 |
+
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
|
336 |
+
pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING)
|
337 |
+
|
338 |
+
if active_jobs or pending_jobs:
|
339 |
+
st.markdown("#### Active Jobs")
|
340 |
+
for job in active_jobs + pending_jobs:
|
341 |
+
render_job_status_card(job)
|
342 |
+
|
343 |
+
# Recent completed jobs
|
344 |
+
completed_jobs = training_manager.list_jobs(TrainingStatus.COMPLETED)[
|
345 |
+
:3
|
346 |
+
] # Show last 3
|
347 |
+
if completed_jobs:
|
348 |
+
st.markdown("#### Recent Completed")
|
349 |
+
for job in completed_jobs:
|
350 |
+
render_job_status_card(job, compact=True)
|
351 |
+
|
352 |
+
|
353 |
+
def render_job_status_card(job: TrainingJob, compact: bool = False):
|
354 |
+
"""Render a status card for a training job"""
|
355 |
+
status_color = {
|
356 |
+
TrainingStatus.PENDING: "🟡",
|
357 |
+
TrainingStatus.RUNNING: "🔵",
|
358 |
+
TrainingStatus.COMPLETED: "🟢",
|
359 |
+
TrainingStatus.FAILED: "🔴",
|
360 |
+
TrainingStatus.CANCELLED: "⚫",
|
361 |
+
}
|
362 |
+
|
363 |
+
with st.expander(
|
364 |
+
f"{status_color[job.status]} {job.config.model_name} - {job.job_id[:8]}",
|
365 |
+
expanded=not compact,
|
366 |
+
):
|
367 |
+
if not compact:
|
368 |
+
col1, col2 = st.columns(2)
|
369 |
+
with col1:
|
370 |
+
st.text(f"Model: {job.config.model_name}")
|
371 |
+
st.text(f"Dataset: {Path(job.config.dataset_path).name}")
|
372 |
+
st.text(f"Status: {job.status.value}")
|
373 |
+
with col2:
|
374 |
+
st.text(f"Created: {job.created_at.strftime('%H:%M:%S')}")
|
375 |
+
if job.status == TrainingStatus.RUNNING:
|
376 |
+
st.text(
|
377 |
+
f"Fold: {job.progress.current_fold}/{job.progress.total_folds}"
|
378 |
+
)
|
379 |
+
st.text(
|
380 |
+
f"Epoch: {job.progress.current_epoch}/{job.progress.total_epochs}"
|
381 |
+
)
|
382 |
+
|
383 |
+
if job.status == TrainingStatus.RUNNING:
|
384 |
+
# Progress bars
|
385 |
+
fold_progress = job.progress.current_fold / job.progress.total_folds
|
386 |
+
epoch_progress = job.progress.current_epoch / job.progress.total_epochs
|
387 |
+
|
388 |
+
st.progress(fold_progress)
|
389 |
+
st.caption(
|
390 |
+
f"Overall: {fold_progress:.1%} | Current Loss: {job.progress.current_loss:.4f}"
|
391 |
+
)
|
392 |
+
|
393 |
+
elif job.status == TrainingStatus.COMPLETED and job.progress.fold_accuracies:
|
394 |
+
mean_acc = np.mean(job.progress.fold_accuracies)
|
395 |
+
std_acc = np.std(job.progress.fold_accuracies)
|
396 |
+
st.success(f"✅ Accuracy: {mean_acc:.3f} ± {std_acc:.3f}")
|
397 |
+
|
398 |
+
elif job.status == TrainingStatus.FAILED:
|
399 |
+
st.error(f"❌ Error: {job.error_message}")
|
400 |
+
|
401 |
+
|
402 |
+
def render_training_progress():
|
403 |
+
"""Render detailed training progress visualization"""
|
404 |
+
st.markdown("### 📈 Training Progress")
|
405 |
+
|
406 |
+
training_manager = get_training_manager()
|
407 |
+
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
|
408 |
+
|
409 |
+
if not active_jobs:
|
410 |
+
st.info("No active training jobs. Start a training job to see progress here.")
|
411 |
+
return
|
412 |
+
|
413 |
+
# Job selector for multiple active jobs
|
414 |
+
if len(active_jobs) > 1:
|
415 |
+
selected_job_id = st.selectbox(
|
416 |
+
"Select Job to Monitor",
|
417 |
+
[job.job_id for job in active_jobs],
|
418 |
+
format_func=lambda x: f"{x[:8]} - {next(job.config.model_name for job in active_jobs if job.job_id == x)}",
|
419 |
+
)
|
420 |
+
selected_job = next(job for job in active_jobs if job.job_id == selected_job_id)
|
421 |
+
else:
|
422 |
+
selected_job = active_jobs[0]
|
423 |
+
|
424 |
+
# Real-time progress visualization
|
425 |
+
render_job_progress_details(selected_job)
|
426 |
+
|
427 |
+
|
428 |
+
def render_job_progress_details(job: TrainingJob):
|
429 |
+
"""Render detailed progress for a specific job with enhanced metrics"""
|
430 |
+
col1, col2 = st.columns(2)
|
431 |
+
|
432 |
+
with col1:
|
433 |
+
st.metric(
|
434 |
+
"Current Fold", f"{job.progress.current_fold}/{job.progress.total_folds}"
|
435 |
+
)
|
436 |
+
st.metric(
|
437 |
+
"Current Epoch", f"{job.progress.current_epoch}/{job.progress.total_epochs}"
|
438 |
+
)
|
439 |
+
|
440 |
+
with col2:
|
441 |
+
st.metric("Current Loss", f"{job.progress.current_loss:.4f}")
|
442 |
+
st.metric("Current Accuracy", f"{job.progress.current_accuracy:.3f}")
|
443 |
+
|
444 |
+
# Progress bars
|
445 |
+
fold_progress = (
|
446 |
+
job.progress.current_fold / job.progress.total_folds
|
447 |
+
if job.progress.total_folds > 0
|
448 |
+
else 0
|
449 |
+
)
|
450 |
+
epoch_progress = (
|
451 |
+
job.progress.current_epoch / job.progress.total_epochs
|
452 |
+
if job.progress.total_epochs > 0
|
453 |
+
else 0
|
454 |
+
)
|
455 |
+
|
456 |
+
st.progress(fold_progress)
|
457 |
+
st.caption(f"Overall Progress: {fold_progress:.1%}")
|
458 |
+
|
459 |
+
st.progress(epoch_progress)
|
460 |
+
st.caption(f"Current Fold Progress: {epoch_progress:.1%}")
|
461 |
+
|
462 |
+
# Enhanced metrics visualization
|
463 |
+
if job.progress.fold_accuracies and job.progress.spectroscopy_metrics:
|
464 |
+
col1, col2 = st.columns(2)
|
465 |
+
|
466 |
+
with col1:
|
467 |
+
# Standard accuracy chart
|
468 |
+
fig_acc = go.Figure(
|
469 |
+
data=go.Bar(
|
470 |
+
x=[f"Fold {i+1}" for i in range(len(job.progress.fold_accuracies))],
|
471 |
+
y=job.progress.fold_accuracies,
|
472 |
+
name="Validation Accuracy",
|
473 |
+
marker_color="lightblue",
|
474 |
+
)
|
475 |
+
)
|
476 |
+
fig_acc.update_layout(
|
477 |
+
title="Cross-Validation Accuracies by Fold",
|
478 |
+
yaxis_title="Accuracy",
|
479 |
+
height=300,
|
480 |
+
)
|
481 |
+
st.plotly_chart(fig_acc, use_container_width=True)
|
482 |
+
|
483 |
+
with col2:
|
484 |
+
# Spectroscopy-specific metrics
|
485 |
+
if len(job.progress.spectroscopy_metrics) > 0:
|
486 |
+
# Extract metrics across folds
|
487 |
+
f1_scores = [
|
488 |
+
m.get("f1_score", 0) for m in job.progress.spectroscopy_metrics
|
489 |
+
]
|
490 |
+
cosine_sim = [
|
491 |
+
m.get("cosine_similarity", 0)
|
492 |
+
for m in job.progress.spectroscopy_metrics
|
493 |
+
]
|
494 |
+
dist_sim = [
|
495 |
+
m.get("distribution_similarity", 0)
|
496 |
+
for m in job.progress.spectroscopy_metrics
|
497 |
+
]
|
498 |
+
|
499 |
+
fig_spectro = go.Figure()
|
500 |
+
|
501 |
+
# Add traces for different metrics
|
502 |
+
fig_spectro.add_trace(
|
503 |
+
go.Scatter(
|
504 |
+
x=[f"Fold {i+1}" for i in range(len(f1_scores))],
|
505 |
+
y=f1_scores,
|
506 |
+
mode="lines+markers",
|
507 |
+
name="F1 Score",
|
508 |
+
line=dict(color="green"),
|
509 |
+
)
|
510 |
+
)
|
511 |
+
|
512 |
+
if any(c > 0 for c in cosine_sim):
|
513 |
+
fig_spectro.add_trace(
|
514 |
+
go.Scatter(
|
515 |
+
x=[f"Fold {i+1}" for i in range(len(cosine_sim))],
|
516 |
+
y=cosine_sim,
|
517 |
+
mode="lines+markers",
|
518 |
+
name="Cosine Similarity",
|
519 |
+
line={"color": "orange"},
|
520 |
+
)
|
521 |
+
)
|
522 |
+
|
523 |
+
fig_spectro.add_trace(
|
524 |
+
go.Scatter(
|
525 |
+
x=[f"Fold {i+1}" for i in range(len(dist_sim))],
|
526 |
+
y=dist_sim,
|
527 |
+
mode="lines+markers",
|
528 |
+
name="Distribution Similarity",
|
529 |
+
line=dict(color="purple"),
|
530 |
+
)
|
531 |
+
)
|
532 |
+
|
533 |
+
fig_spectro.update_layout(
|
534 |
+
title="Spectroscopy-Specific Metrics by Fold",
|
535 |
+
yaxis_title="Score",
|
536 |
+
height=300,
|
537 |
+
legend=dict(
|
538 |
+
orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1
|
539 |
+
),
|
540 |
+
)
|
541 |
+
st.plotly_chart(fig_spectro, use_container_width=True)
|
542 |
+
|
543 |
+
elif job.progress.fold_accuracies:
|
544 |
+
# Fallback to standard accuracy chart only
|
545 |
+
fig = go.Figure(
|
546 |
+
data=go.Bar(
|
547 |
+
x=[f"Fold {i+1}" for i in range(len(job.progress.fold_accuracies))],
|
548 |
+
y=job.progress.fold_accuracies,
|
549 |
+
name="Validation Accuracy",
|
550 |
+
)
|
551 |
+
)
|
552 |
+
fig.update_layout(
|
553 |
+
title="Cross-Validation Accuracies by Fold",
|
554 |
+
yaxis_title="Accuracy",
|
555 |
+
height=300,
|
556 |
+
)
|
557 |
+
st.plotly_chart(fig, use_container_width=True)
|
558 |
+
|
559 |
+
|
560 |
+
def render_training_history():
|
561 |
+
"""Render training history and results"""
|
562 |
+
st.markdown("### 📚 Training History")
|
563 |
+
|
564 |
+
training_manager = get_training_manager()
|
565 |
+
all_jobs = training_manager.list_jobs()
|
566 |
+
|
567 |
+
if not all_jobs:
|
568 |
+
st.info("No training history available. Start training some models!")
|
569 |
+
return
|
570 |
+
|
571 |
+
# Convert to DataFrame for display
|
572 |
+
history_data = []
|
573 |
+
for job in all_jobs:
|
574 |
+
row = {
|
575 |
+
"Job ID": job.job_id[:8],
|
576 |
+
"Model": job.config.model_name,
|
577 |
+
"Dataset": Path(job.config.dataset_path).name,
|
578 |
+
"Status": job.status.value,
|
579 |
+
"Created": job.created_at.strftime("%Y-%m-%d %H:%M"),
|
580 |
+
"Duration": "",
|
581 |
+
"Accuracy": "",
|
582 |
+
}
|
583 |
+
|
584 |
+
if job.completed_at and job.started_at:
|
585 |
+
duration = job.completed_at - job.started_at
|
586 |
+
row["Duration"] = str(duration).split(".")[0] # Remove microseconds
|
587 |
+
|
588 |
+
if job.status == TrainingStatus.COMPLETED and job.progress.fold_accuracies:
|
589 |
+
mean_acc = np.mean(job.progress.fold_accuracies)
|
590 |
+
std_acc = np.std(job.progress.fold_accuracies)
|
591 |
+
row["Accuracy"] = f"{mean_acc:.3f} ± {std_acc:.3f}"
|
592 |
+
|
593 |
+
history_data.append(row)
|
594 |
+
|
595 |
+
df = pd.DataFrame(history_data)
|
596 |
+
st.dataframe(df, use_container_width=True)
|
597 |
+
|
598 |
+
# Job details
|
599 |
+
if st.checkbox("Show detailed results"):
|
600 |
+
completed_jobs = [
|
601 |
+
job for job in all_jobs if job.status == TrainingStatus.COMPLETED
|
602 |
+
]
|
603 |
+
if completed_jobs:
|
604 |
+
selected_job_id = st.selectbox(
|
605 |
+
"Select job for details",
|
606 |
+
[job.job_id for job in completed_jobs],
|
607 |
+
format_func=lambda x: f"{x[:8]} - {next(job.config.model_name for job in completed_jobs if job.job_id == x)}",
|
608 |
+
)
|
609 |
+
|
610 |
+
selected_job = next(
|
611 |
+
job for job in completed_jobs if job.job_id == selected_job_id
|
612 |
+
)
|
613 |
+
render_training_results(selected_job)
|
614 |
+
|
615 |
+
|
616 |
+
def render_training_results(job: TrainingJob):
|
617 |
+
"""Render detailed training results for a completed job with enhanced metrics"""
|
618 |
+
st.markdown(f"#### Results for {job.config.model_name} - {job.job_id[:8]}")
|
619 |
+
|
620 |
+
if not job.progress.fold_accuracies:
|
621 |
+
st.warning("No results available for this job.")
|
622 |
+
return
|
623 |
+
|
624 |
+
# Summary metrics
|
625 |
+
mean_acc = np.mean(job.progress.fold_accuracies)
|
626 |
+
std_acc = np.std(job.progress.fold_accuracies)
|
627 |
+
|
628 |
+
# Enhanced metrics display
|
629 |
+
col1, col2, col3, col4 = st.columns(4)
|
630 |
+
with col1:
|
631 |
+
st.metric("Mean Accuracy", f"{mean_acc:.3f}")
|
632 |
+
with col2:
|
633 |
+
st.metric("Std Deviation", f"{std_acc:.3f}")
|
634 |
+
with col3:
|
635 |
+
st.metric("Best Fold", f"{max(job.progress.fold_accuracies):.3f}")
|
636 |
+
with col4:
|
637 |
+
st.metric("CV Strategy", job.config.cv_strategy.replace("_", " ").title())
|
638 |
+
|
639 |
+
# Spectroscopy-specific metrics summary
|
640 |
+
if job.progress.spectroscopy_metrics:
|
641 |
+
st.markdown("**Spectroscopy-Specific Metrics Summary**")
|
642 |
+
spectro_summary = {}
|
643 |
+
|
644 |
+
for metric_name in ["f1_score", "cosine_similarity", "distribution_similarity"]:
|
645 |
+
values = [
|
646 |
+
m.get(metric_name, 0)
|
647 |
+
for m in job.progress.spectroscopy_metrics
|
648 |
+
if m.get(metric_name, 0) > 0
|
649 |
+
]
|
650 |
+
if values:
|
651 |
+
spectro_summary[metric_name] = {
|
652 |
+
"mean": np.mean(values),
|
653 |
+
"std": np.std(values),
|
654 |
+
"best": max(values),
|
655 |
+
}
|
656 |
+
|
657 |
+
if spectro_summary:
|
658 |
+
cols = st.columns(len(spectro_summary))
|
659 |
+
for i, (metric, stats) in enumerate(spectro_summary.items()):
|
660 |
+
with cols[i]:
|
661 |
+
metric_display = metric.replace("_", " ").title()
|
662 |
+
st.metric(
|
663 |
+
f"{metric_display}",
|
664 |
+
f"{stats['mean']:.3f} ± {stats['std']:.3f}",
|
665 |
+
f"Best: {stats['best']:.3f}",
|
666 |
+
)
|
667 |
+
|
668 |
+
# Configuration summary
|
669 |
+
with st.expander("Training Configuration"):
|
670 |
+
config_display = {
|
671 |
+
"Model": job.config.model_name,
|
672 |
+
"Dataset": Path(job.config.dataset_path).name,
|
673 |
+
"Epochs": job.config.epochs,
|
674 |
+
"Batch Size": job.config.batch_size,
|
675 |
+
"Learning Rate": job.config.learning_rate,
|
676 |
+
"CV Folds": job.config.num_folds,
|
677 |
+
"CV Strategy": job.config.cv_strategy,
|
678 |
+
"Augmentation": "Enabled" if job.config.enable_augmentation else "Disabled",
|
679 |
+
"Noise Level": (
|
680 |
+
job.config.noise_level if job.config.enable_augmentation else "N/A"
|
681 |
+
),
|
682 |
+
"Spectral Weight": job.config.spectral_weight,
|
683 |
+
"Device": job.config.device,
|
684 |
+
}
|
685 |
+
|
686 |
+
config_df = pd.DataFrame(
|
687 |
+
list(config_display.items()), columns=["Parameter", "Value"]
|
688 |
+
)
|
689 |
+
st.dataframe(config_df, use_container_width=True)
|
690 |
+
|
691 |
+
# Enhanced visualizations
|
692 |
+
col1, col2 = st.columns(2)
|
693 |
+
|
694 |
+
with col1:
|
695 |
+
# Accuracy distribution
|
696 |
+
fig_acc = go.Figure(
|
697 |
+
data=go.Box(y=job.progress.fold_accuracies, name="Fold Accuracies")
|
698 |
+
)
|
699 |
+
fig_acc.update_layout(
|
700 |
+
title="Cross-Validation Accuracy Distribution", yaxis_title="Accuracy"
|
701 |
+
)
|
702 |
+
st.plotly_chart(fig_acc, use_container_width=True)
|
703 |
+
|
704 |
+
with col2:
|
705 |
+
# Metrics comparison if available
|
706 |
+
if (
|
707 |
+
job.progress.spectroscopy_metrics
|
708 |
+
and len(job.progress.spectroscopy_metrics) > 0
|
709 |
+
):
|
710 |
+
metrics_df = pd.DataFrame(job.progress.spectroscopy_metrics)
|
711 |
+
|
712 |
+
if not metrics_df.empty:
|
713 |
+
fig_metrics = go.Figure()
|
714 |
+
|
715 |
+
for col in metrics_df.columns:
|
716 |
+
if col in [
|
717 |
+
"accuracy",
|
718 |
+
"f1_score",
|
719 |
+
"cosine_similarity",
|
720 |
+
"distribution_similarity",
|
721 |
+
]:
|
722 |
+
fig_metrics.add_trace(
|
723 |
+
go.Scatter(
|
724 |
+
x=list(range(1, len(metrics_df) + 1)),
|
725 |
+
y=metrics_df[col],
|
726 |
+
mode="lines+markers",
|
727 |
+
name=col.replace("_", " ").title(),
|
728 |
+
)
|
729 |
+
)
|
730 |
+
|
731 |
+
fig_metrics.update_layout(
|
732 |
+
title="All Metrics Across Folds",
|
733 |
+
xaxis_title="Fold",
|
734 |
+
yaxis_title="Score",
|
735 |
+
height=300,
|
736 |
+
)
|
737 |
+
st.plotly_chart(fig_metrics, use_container_width=True)
|
738 |
+
|
739 |
+
# Download options
|
740 |
+
col1, col2, col3 = st.columns(3)
|
741 |
+
with col1:
|
742 |
+
if st.button("📥 Download Weights", key=f"weights_{job.job_id}"):
|
743 |
+
if job.weights_path and os.path.exists(job.weights_path):
|
744 |
+
with open(job.weights_path, "rb") as f:
|
745 |
+
st.download_button(
|
746 |
+
"Download Model Weights",
|
747 |
+
f.read(),
|
748 |
+
file_name=f"{job.config.model_name}_{job.job_id[:8]}.pth",
|
749 |
+
mime="application/octet-stream",
|
750 |
+
)
|
751 |
+
|
752 |
+
with col2:
|
753 |
+
if st.button("📄 Download Logs", key=f"logs_{job.job_id}"):
|
754 |
+
if job.logs_path and os.path.exists(job.logs_path):
|
755 |
+
with open(job.logs_path, "r") as f:
|
756 |
+
st.download_button(
|
757 |
+
"Download Training Logs",
|
758 |
+
f.read(),
|
759 |
+
file_name=f"training_log_{job.job_id[:8]}.json",
|
760 |
+
mime="application/json",
|
761 |
+
)
|
762 |
+
|
763 |
+
with col3:
|
764 |
+
if st.button("📊 Download Metrics CSV", key=f"metrics_{job.job_id}"):
|
765 |
+
# Create comprehensive metrics CSV
|
766 |
+
metrics_data = []
|
767 |
+
for i, (acc, spectro) in enumerate(
|
768 |
+
zip(
|
769 |
+
job.progress.fold_accuracies,
|
770 |
+
job.progress.spectroscopy_metrics or [],
|
771 |
+
)
|
772 |
+
):
|
773 |
+
row = {"fold": i + 1, "accuracy": acc}
|
774 |
+
if spectro:
|
775 |
+
row.update(spectro)
|
776 |
+
metrics_data.append(row)
|
777 |
+
|
778 |
+
metrics_df = pd.DataFrame(metrics_data)
|
779 |
+
csv = metrics_df.to_csv(index=False)
|
780 |
+
st.download_button(
|
781 |
+
"Download Metrics CSV",
|
782 |
+
csv,
|
783 |
+
file_name=f"metrics_{job.job_id[:8]}.csv",
|
784 |
+
mime="text/csv",
|
785 |
+
)
|
786 |
+
|
787 |
+
# Interpretability section
|
788 |
+
if st.checkbox("🔍 Show Model Interpretability", key=f"interpret_{job.job_id}"):
|
789 |
+
render_model_interpretability(job)
|
790 |
+
|
791 |
+
|
792 |
+
def render_model_interpretability(job: TrainingJob):
|
793 |
+
"""Render model interpretability features"""
|
794 |
+
st.markdown("##### 🔍 Model Interpretability")
|
795 |
+
|
796 |
+
try:
|
797 |
+
# Try to load the trained model for interpretation
|
798 |
+
if not job.weights_path or not os.path.exists(job.weights_path):
|
799 |
+
st.warning("Model weights not available for interpretation.")
|
800 |
+
return
|
801 |
+
|
802 |
+
# Simple feature importance visualization
|
803 |
+
st.markdown("**Feature Importance Analysis**")
|
804 |
+
|
805 |
+
# Generate mock feature importance for demonstration
|
806 |
+
# In a real implementation, this would use SHAP, Captum, or gradient-based methods
|
807 |
+
wavenumbers = np.linspace(400, 4000, job.config.target_len)
|
808 |
+
|
809 |
+
# Simulate feature importance (peaks at common polymer bands)
|
810 |
+
importance = np.zeros_like(wavenumbers)
|
811 |
+
|
812 |
+
# Simulate important regions for polymer degradation
|
813 |
+
# C-H stretch (2800-3000 cm⁻¹)
|
814 |
+
ch_region = (wavenumbers >= 2800) & (wavenumbers <= 3000)
|
815 |
+
importance[ch_region] = np.random.normal(0.8, 0.1, (np.sum(ch_region),))
|
816 |
+
|
817 |
+
# C=O stretch (1600-1800 cm⁻¹) - often changes with degradation
|
818 |
+
co_region = (wavenumbers >= 1600) & (wavenumbers <= 1800)
|
819 |
+
importance[co_region] = np.random.normal(0.9, 0.1, int(np.sum(co_region)))
|
820 |
+
|
821 |
+
# Fingerprint region (400-1500 cm⁻¹)
|
822 |
+
fingerprint_region = (wavenumbers >= 400) & (wavenumbers <= 1500)
|
823 |
+
importance[fingerprint_region] = np.random.normal(
|
824 |
+
0.3, 0.2, int(np.sum(fingerprint_region))
|
825 |
+
)
|
826 |
+
|
827 |
+
# Normalize importance
|
828 |
+
importance = np.abs(importance)
|
829 |
+
importance = (
|
830 |
+
importance / np.max(importance) if np.max(importance) > 0 else importance
|
831 |
+
)
|
832 |
+
|
833 |
+
# Create interpretability plot
|
834 |
+
fig_interpret = go.Figure()
|
835 |
+
|
836 |
+
# Add feature importance
|
837 |
+
fig_interpret.add_trace(
|
838 |
+
go.Scatter(
|
839 |
+
x=wavenumbers,
|
840 |
+
y=importance,
|
841 |
+
mode="lines",
|
842 |
+
name="Feature Importance",
|
843 |
+
fill="tonexty",
|
844 |
+
line=dict(color="red", width=2),
|
845 |
+
)
|
846 |
+
)
|
847 |
+
|
848 |
+
# Add annotations for important regions
|
849 |
+
fig_interpret.add_annotation(
|
850 |
+
x=2900,
|
851 |
+
y=0.8,
|
852 |
+
text="C-H Stretch<br>(Polymer backbone)",
|
853 |
+
showarrow=True,
|
854 |
+
arrowhead=2,
|
855 |
+
arrowcolor="blue",
|
856 |
+
bgcolor="lightblue",
|
857 |
+
bordercolor="blue",
|
858 |
+
)
|
859 |
+
|
860 |
+
fig_interpret.add_annotation(
|
861 |
+
x=1700,
|
862 |
+
y=0.9,
|
863 |
+
text="C=O Stretch<br>(Degradation marker)",
|
864 |
+
showarrow=True,
|
865 |
+
arrowhead=2,
|
866 |
+
arrowcolor="red",
|
867 |
+
bgcolor="lightcoral",
|
868 |
+
bordercolor="red",
|
869 |
+
)
|
870 |
+
|
871 |
+
fig_interpret.update_layout(
|
872 |
+
title="Model Feature Importance for Polymer Degradation Classification",
|
873 |
+
xaxis_title="Wavenumber (cm⁻¹)",
|
874 |
+
yaxis_title="Feature Importance",
|
875 |
+
height=400,
|
876 |
+
showlegend=False,
|
877 |
+
)
|
878 |
+
|
879 |
+
st.plotly_chart(fig_interpret, use_container_width=True)
|
880 |
+
|
881 |
+
# Interpretation insights
|
882 |
+
st.markdown("**Key Insights:**")
|
883 |
+
col1, col2 = st.columns(2)
|
884 |
+
|
885 |
+
with col1:
|
886 |
+
st.info(
|
887 |
+
"🔬 **High Importance Regions:**\n"
|
888 |
+
"- C=O stretch (1600-1800 cm⁻¹): Critical for degradation detection\n"
|
889 |
+
"- C-H stretch (2800-3000 cm⁻¹): Polymer backbone changes"
|
890 |
+
)
|
891 |
+
|
892 |
+
with col2:
|
893 |
+
st.info(
|
894 |
+
"📊 **Model Behavior:**\n"
|
895 |
+
"- Focuses on spectral regions known to change with polymer degradation\n"
|
896 |
+
"- Fingerprint region provides molecular specificity"
|
897 |
+
)
|
898 |
+
|
899 |
+
# Attention heatmap simulation
|
900 |
+
st.markdown("**Spectral Attention Heatmap**")
|
901 |
+
|
902 |
+
# Create a 2D heatmap showing attention across different samples
|
903 |
+
n_samples = 10
|
904 |
+
attention_matrix = np.random.beta(2, 5, (n_samples, len(wavenumbers)))
|
905 |
+
|
906 |
+
# Enhance attention in important regions
|
907 |
+
for i in range(n_samples):
|
908 |
+
attention_matrix[i, ch_region] *= np.random.uniform(2, 4)
|
909 |
+
attention_matrix[i, co_region] *= np.random.uniform(3, 5)
|
910 |
+
|
911 |
+
fig_heatmap = go.Figure(
|
912 |
+
data=go.Heatmap(
|
913 |
+
z=attention_matrix,
|
914 |
+
x=wavenumbers[::10], # Subsample for display
|
915 |
+
y=[f"Sample {i+1}" for i in range(n_samples)],
|
916 |
+
colorscale="Viridis",
|
917 |
+
colorbar=dict(title="Attention Score"),
|
918 |
+
)
|
919 |
+
)
|
920 |
+
|
921 |
+
fig_heatmap.update_layout(
|
922 |
+
title="Model Attention Across Different Samples",
|
923 |
+
xaxis_title="Wavenumber (cm⁻¹)",
|
924 |
+
yaxis_title="Sample",
|
925 |
+
height=300,
|
926 |
+
)
|
927 |
+
|
928 |
+
st.plotly_chart(fig_heatmap, use_container_width=True)
|
929 |
+
|
930 |
+
st.markdown(
|
931 |
+
"**Note:** *This interpretability analysis is simulated for demonstration. "
|
932 |
+
"In production, this would use actual gradient-based attribution methods "
|
933 |
+
"(SHAP, Integrated Gradients, etc.) on the trained model.*"
|
934 |
+
)
|
935 |
+
|
936 |
+
except Exception as e:
|
937 |
+
st.error(f"Error generating interpretability analysis: {e}")
|
938 |
+
st.info("Interpretability features require the trained model to be available.")
|
939 |
+
|
940 |
+
|
941 |
+
def start_training_job():
|
942 |
+
"""Start a new training job with current configuration"""
|
943 |
+
# Validate configuration
|
944 |
+
if "selected_dataset" not in st.session_state:
|
945 |
+
st.error("❌ Please select a dataset first.")
|
946 |
+
return
|
947 |
+
|
948 |
+
if not Path(st.session_state["selected_dataset"]).exists():
|
949 |
+
st.error("❌ Selected dataset path does not exist.")
|
950 |
+
return
|
951 |
+
|
952 |
+
# Create training configuration
|
953 |
+
config = TrainingConfig(
|
954 |
+
model_name=st.session_state.get("selected_model", "figure2"),
|
955 |
+
dataset_path=st.session_state["selected_dataset"],
|
956 |
+
target_len=st.session_state.get("train_target_len", 500),
|
957 |
+
batch_size=st.session_state.get("train_batch_size", 16),
|
958 |
+
epochs=st.session_state.get("train_epochs", 10),
|
959 |
+
learning_rate=st.session_state.get("train_learning_rate", 1e-3),
|
960 |
+
num_folds=st.session_state.get("train_num_folds", 10),
|
961 |
+
baseline_correction=st.session_state.get("train_baseline_correction", True),
|
962 |
+
smoothing=st.session_state.get("train_smoothing", True),
|
963 |
+
normalization=st.session_state.get("train_normalization", True),
|
964 |
+
modality=st.session_state.get("train_modality", "raman"),
|
965 |
+
device=st.session_state.get("train_device", "auto"),
|
966 |
+
cv_strategy=st.session_state.get("train_cv_strategy", "stratified_kfold"),
|
967 |
+
enable_augmentation=st.session_state.get("train_enable_augmentation", False),
|
968 |
+
noise_level=st.session_state.get("train_noise_level", 0.01),
|
969 |
+
spectral_weight=st.session_state.get("train_spectral_weight", 0.1),
|
970 |
+
)
|
971 |
+
|
972 |
+
# Submit job
|
973 |
+
training_manager = get_training_manager()
|
974 |
+
job_id = training_manager.submit_training_job(config)
|
975 |
+
|
976 |
+
st.success(f"✅ Training job started! Job ID: {job_id[:8]}")
|
977 |
+
st.info("Monitor progress in the Training Status section above.")
|
978 |
+
|
979 |
+
# Auto-refresh to show new job
|
980 |
+
time.sleep(1)
|
981 |
+
st.rerun()
|
982 |
+
|
983 |
+
|
984 |
+
def save_uploaded_dataset(
|
985 |
+
uploaded_files, dataset_name: str, file_labels: Dict[str, str]
|
986 |
+
):
|
987 |
+
"""Save uploaded dataset to local storage"""
|
988 |
+
try:
|
989 |
+
# Create dataset directory
|
990 |
+
dataset_dir = Path("datasets") / dataset_name
|
991 |
+
dataset_dir.mkdir(parents=True, exist_ok=True)
|
992 |
+
|
993 |
+
# Create label directories
|
994 |
+
(dataset_dir / "stable").mkdir(exist_ok=True)
|
995 |
+
(dataset_dir / "weathered").mkdir(exist_ok=True)
|
996 |
+
|
997 |
+
# Save files
|
998 |
+
saved_count = 0
|
999 |
+
for file in uploaded_files:
|
1000 |
+
# Determine label
|
1001 |
+
label = file_labels.get(file.name, "stable") # Default to stable
|
1002 |
+
if "weathered" in file.name.lower() or "degraded" in file.name.lower():
|
1003 |
+
label = "weathered"
|
1004 |
+
|
1005 |
+
# Save file
|
1006 |
+
target_path = dataset_dir / label / file.name
|
1007 |
+
with open(target_path, "wb") as f:
|
1008 |
+
f.write(file.getbuffer())
|
1009 |
+
saved_count += 1
|
1010 |
+
|
1011 |
+
st.success(
|
1012 |
+
f"✅ Dataset '{dataset_name}' saved successfully! {saved_count} files processed."
|
1013 |
+
)
|
1014 |
+
st.session_state["selected_dataset"] = str(dataset_dir)
|
1015 |
+
|
1016 |
+
# Display saved dataset info
|
1017 |
+
display_dataset_info(dataset_dir)
|
1018 |
+
|
1019 |
+
except Exception as e:
|
1020 |
+
st.error(f"❌ Error saving dataset: {str(e)}")
|
1021 |
+
|
1022 |
+
|
1023 |
+
# Auto-refresh for active training jobs
|
1024 |
+
def setup_training_auto_refresh():
|
1025 |
+
"""Set up auto-refresh for training progress"""
|
1026 |
+
if "training_auto_refresh" not in st.session_state:
|
1027 |
+
st.session_state.training_auto_refresh = True
|
1028 |
+
|
1029 |
+
training_manager = get_training_manager()
|
1030 |
+
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
|
1031 |
+
|
1032 |
+
if active_jobs and st.session_state.training_auto_refresh:
|
1033 |
+
# Auto-refresh every 5 seconds if there are active jobs
|
1034 |
+
time.sleep(5)
|
1035 |
+
st.rerun()
|