Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
Β·
723ebe4
1
Parent(s):
65f2520
(DEPLOY): make app.py portable for HF + canonical
Browse files- Use Agg backend for headless ploting.
- Dual-path import for resample_spectrum (scripts/ then utils/)
- Flexible weights path (WEIGHTS_DIR env -> model_weights -> outputs)
- Detach logits before numpy to avoid autograd refs
- deploy/hf-space/app.py +537 -0
deploy/hf-space/app.py
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
AI-Driven Polymer Aging Prediction and Classification
|
3 |
+
Hugging Face Spaces Deployment
|
4 |
+
This is an adapted version of the Streamlit app optimized for Hugging Face Spaces deployment.
|
5 |
+
It maintains all the functionality of the original app while being self-contained and cloud-ready.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# Ensure 'utils' directory is in the Python path
|
13 |
+
utils_path = Path(__file__).resolve().parent / "utils"
|
14 |
+
if utils_path.is_dir() and str(utils_path) not in sys.path:
|
15 |
+
sys.path.append(str(utils_path))
|
16 |
+
import streamlit as st
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
import matplotlib
|
20 |
+
matplotlib.use("Agg") # ensure headless rendering in Spaces
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
from PIL import Image
|
23 |
+
import io
|
24 |
+
from pathlib import Path
|
25 |
+
import time
|
26 |
+
import gc
|
27 |
+
from io import StringIO
|
28 |
+
|
29 |
+
# Import local modules
|
30 |
+
from models.figure2_cnn import Figure2CNN
|
31 |
+
from models.resnet_cnn import ResNet1D
|
32 |
+
# Prefer canonical script; fallback to local utils for HF hard-copy scenario
|
33 |
+
try:
|
34 |
+
from scripts.preprocess_dataset import resample_spectrum
|
35 |
+
except ImportError:
|
36 |
+
from utils.preprocessing import resample_spectrum
|
37 |
+
|
38 |
+
# Configuration
|
39 |
+
st.set_page_config(
|
40 |
+
page_title="ML Polymer Classification",
|
41 |
+
page_icon="π¬",
|
42 |
+
layout="wide",
|
43 |
+
initial_sidebar_state="expanded"
|
44 |
+
)
|
45 |
+
|
46 |
+
# Constants
|
47 |
+
TARGET_LEN = 500
|
48 |
+
SAMPLE_DATA_DIR = "sample_data"
|
49 |
+
# Prefer env var, else 'model_weights' if present; else canonical 'outputs'
|
50 |
+
MODEL_WEIGHTS_DIR = (
|
51 |
+
os.getenv("WEIGHTS_DIR")
|
52 |
+
or ("model_weights" if os.path.isdir("model_weights") else "outputs")
|
53 |
+
)
|
54 |
+
|
55 |
+
# Model configuration
|
56 |
+
MODEL_CONFIG = {
|
57 |
+
"Figure2CNN (Baseline)": {
|
58 |
+
"class": Figure2CNN,
|
59 |
+
"path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth",
|
60 |
+
"emoji": "π¬",
|
61 |
+
"description": "Baseline CNN with standard filters",
|
62 |
+
"accuracy": "94.80%",
|
63 |
+
"f1": "94.30%"
|
64 |
+
},
|
65 |
+
"ResNet1D (Advanced)": {
|
66 |
+
"class": ResNet1D,
|
67 |
+
"path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth",
|
68 |
+
"emoji": "π§ ",
|
69 |
+
"description": "Residual CNN with deeper feature learning",
|
70 |
+
"accuracy": "96.20%",
|
71 |
+
"f1": "95.90%"
|
72 |
+
}
|
73 |
+
}
|
74 |
+
|
75 |
+
# Label mapping
|
76 |
+
LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
|
77 |
+
|
78 |
+
# Utility functions
|
79 |
+
def label_file(filename: str) -> int:
|
80 |
+
"""Extract label from filename based on naming convention"""
|
81 |
+
name = Path(filename).name.lower()
|
82 |
+
if name.startswith("sta"):
|
83 |
+
return 0
|
84 |
+
elif name.startswith("wea"):
|
85 |
+
return 1
|
86 |
+
else:
|
87 |
+
# Return None for unknown patterns instead of raising error
|
88 |
+
return -1 # Default value for unknown patterns
|
89 |
+
|
90 |
+
@st.cache_resource
|
91 |
+
def load_model(model_name):
|
92 |
+
"""Load and cache the specified model with error handling"""
|
93 |
+
try:
|
94 |
+
config = MODEL_CONFIG[model_name]
|
95 |
+
model_class = config["class"]
|
96 |
+
model_path = config["path"]
|
97 |
+
|
98 |
+
# Initialize model
|
99 |
+
model = model_class(input_length=TARGET_LEN)
|
100 |
+
|
101 |
+
# Check if model file exists
|
102 |
+
if not os.path.exists(model_path):
|
103 |
+
st.warning(f"β οΈ Model weights not found: {model_path}")
|
104 |
+
st.info("Using randomly initialized model for demonstration purposes.")
|
105 |
+
return model, False
|
106 |
+
|
107 |
+
# Load weights
|
108 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
109 |
+
model.load_state_dict(state_dict, strict=False)
|
110 |
+
model.eval()
|
111 |
+
|
112 |
+
return model, True
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
st.error(f"β Error loading model {model_name}: {str(e)}")
|
116 |
+
return None, False
|
117 |
+
|
118 |
+
def cleanup_memory():
|
119 |
+
"""Clean up memory after inference"""
|
120 |
+
gc.collect()
|
121 |
+
if torch.cuda.is_available():
|
122 |
+
torch.cuda.empty_cache()
|
123 |
+
|
124 |
+
@st.cache_data
|
125 |
+
def get_sample_files():
|
126 |
+
"""Get list of sample files if available"""
|
127 |
+
sample_dir = Path(SAMPLE_DATA_DIR)
|
128 |
+
if sample_dir.exists():
|
129 |
+
return sorted(list(sample_dir.glob("*.txt")))
|
130 |
+
return []
|
131 |
+
|
132 |
+
def parse_spectrum_data(raw_text):
|
133 |
+
"""Parse spectrum data from text with robust error handling"""
|
134 |
+
x_vals, y_vals = [], []
|
135 |
+
|
136 |
+
for line in raw_text.splitlines():
|
137 |
+
line = line.strip()
|
138 |
+
if not line or line.startswith('#'): # Skip empty lines and comments
|
139 |
+
continue
|
140 |
+
|
141 |
+
try:
|
142 |
+
# Handle different separators
|
143 |
+
parts = line.replace(",", " ").split()
|
144 |
+
numbers = [p for p in parts if p.replace('.', '', 1).replace('-', '', 1).replace('+', '', 1).isdigit()]
|
145 |
+
|
146 |
+
if len(numbers) >= 2:
|
147 |
+
x, y = float(numbers[0]), float(numbers[1])
|
148 |
+
x_vals.append(x)
|
149 |
+
y_vals.append(y)
|
150 |
+
|
151 |
+
except ValueError:
|
152 |
+
# Skip problematic lines but don't fail completely
|
153 |
+
continue
|
154 |
+
|
155 |
+
if len(x_vals) < 10: # Minimum reasonable spectrum length
|
156 |
+
raise ValueError(f"Insufficient data points: {len(x_vals)}. Need at least 10 points.")
|
157 |
+
|
158 |
+
return np.array(x_vals), np.array(y_vals)
|
159 |
+
|
160 |
+
def create_spectrum_plot(x_raw, y_raw, y_resampled):
|
161 |
+
"""Create spectrum visualization plot"""
|
162 |
+
fig, ax = plt.subplots(1, 2, figsize=(12, 4), dpi=100)
|
163 |
+
|
164 |
+
# Raw spectrum
|
165 |
+
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
|
166 |
+
ax[0].set_title("Raw Input Spectrum")
|
167 |
+
ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)")
|
168 |
+
ax[0].set_ylabel("Intensity")
|
169 |
+
ax[0].grid(True, alpha=0.3)
|
170 |
+
ax[0].legend()
|
171 |
+
|
172 |
+
# Resampled spectrum
|
173 |
+
x_resampled = np.linspace(min(x_raw), max(x_raw), TARGET_LEN)
|
174 |
+
ax[1].plot(x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1)
|
175 |
+
ax[1].set_title(f"Resampled ({TARGET_LEN} points)")
|
176 |
+
ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)")
|
177 |
+
ax[1].set_ylabel("Intensity")
|
178 |
+
ax[1].grid(True, alpha=0.3)
|
179 |
+
ax[1].legend()
|
180 |
+
|
181 |
+
plt.tight_layout()
|
182 |
+
|
183 |
+
# Convert to image
|
184 |
+
buf = io.BytesIO()
|
185 |
+
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100)
|
186 |
+
buf.seek(0)
|
187 |
+
plt.close(fig) # Prevent memory leaks
|
188 |
+
|
189 |
+
return Image.open(buf)
|
190 |
+
|
191 |
+
def get_confidence_description(logit_margin):
|
192 |
+
"""Get human-readable confidence description"""
|
193 |
+
if logit_margin > 1000:
|
194 |
+
return "VERY HIGH", "π’"
|
195 |
+
elif logit_margin > 250:
|
196 |
+
return "HIGH", "π‘"
|
197 |
+
elif logit_margin > 100:
|
198 |
+
return "MODERATE", "π "
|
199 |
+
else:
|
200 |
+
return "LOW", "π΄"
|
201 |
+
|
202 |
+
# Initialize session state
|
203 |
+
def init_session_state():
|
204 |
+
"""Initialize session state variables"""
|
205 |
+
defaults = {
|
206 |
+
'status_message': "Ready to analyze polymer spectra π¬",
|
207 |
+
'status_type': "info",
|
208 |
+
'uploaded_file': None,
|
209 |
+
'filename': None,
|
210 |
+
'inference_run_once': False,
|
211 |
+
'x_raw': None,
|
212 |
+
'y_raw': None,
|
213 |
+
'y_resampled': None
|
214 |
+
}
|
215 |
+
|
216 |
+
for key, default_value in defaults.items():
|
217 |
+
if key not in st.session_state:
|
218 |
+
st.session_state[key] = default_value
|
219 |
+
|
220 |
+
# Main app
|
221 |
+
def main():
|
222 |
+
init_session_state()
|
223 |
+
|
224 |
+
# Header
|
225 |
+
st.title("π¬ AI-Driven Polymer Classification")
|
226 |
+
st.markdown("**Predict polymer degradation states using Raman spectroscopy and deep learning**")
|
227 |
+
|
228 |
+
# Sidebar
|
229 |
+
with st.sidebar:
|
230 |
+
st.header("βΉοΈ About This App")
|
231 |
+
st.markdown("""
|
232 |
+
**AIRE 2025 Internship Project**
|
233 |
+
AI-Driven Polymer Aging Prediction and Classification
|
234 |
+
|
235 |
+
π― **Purpose**: Classify polymer degradation using AI
|
236 |
+
π **Input**: Raman spectroscopy data
|
237 |
+
π§ **Models**: CNN architectures for binary classification
|
238 |
+
|
239 |
+
**Team**:
|
240 |
+
- **Mentor**: Dr. Sanmukh Kuppannagari
|
241 |
+
- **Mentor**: Dr. Metin Karailyan
|
242 |
+
- **Author**: Jaser Hasan
|
243 |
+
|
244 |
+
π [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
|
245 |
+
""")
|
246 |
+
|
247 |
+
st.markdown("---")
|
248 |
+
|
249 |
+
# Model selection
|
250 |
+
st.subheader("π§ Model Selection")
|
251 |
+
model_labels = [f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()]
|
252 |
+
selected_label = st.selectbox("Choose AI model:", model_labels)
|
253 |
+
model_choice = selected_label.split(" ", 1)[1]
|
254 |
+
|
255 |
+
# Model info
|
256 |
+
config = MODEL_CONFIG[model_choice]
|
257 |
+
st.markdown(f"""
|
258 |
+
**π {config['emoji']} Model Details**
|
259 |
+
|
260 |
+
*{config['description']}*
|
261 |
+
|
262 |
+
- **Accuracy**: `{config['accuracy']}`
|
263 |
+
- **F1 Score**: `{config['f1']}`
|
264 |
+
""")
|
265 |
+
|
266 |
+
# Main content area
|
267 |
+
col1, col2 = st.columns([1, 1.5], gap="large")
|
268 |
+
|
269 |
+
with col1:
|
270 |
+
st.subheader("π Data Input")
|
271 |
+
|
272 |
+
# File upload tabs
|
273 |
+
tab1, tab2 = st.tabs(["π€ Upload File", "π§ͺ Sample Data"])
|
274 |
+
|
275 |
+
uploaded_file = None
|
276 |
+
|
277 |
+
with tab1:
|
278 |
+
uploaded_file = st.file_uploader(
|
279 |
+
"Upload Raman spectrum (.txt)",
|
280 |
+
type="txt",
|
281 |
+
help="Upload a text file with wavenumber and intensity columns"
|
282 |
+
)
|
283 |
+
|
284 |
+
if uploaded_file:
|
285 |
+
st.success(f"β
Loaded: {uploaded_file.name}")
|
286 |
+
|
287 |
+
with tab2:
|
288 |
+
sample_files = get_sample_files()
|
289 |
+
if sample_files:
|
290 |
+
sample_options = ["-- Select Sample --"] + [f.name for f in sample_files]
|
291 |
+
selected_sample = st.selectbox("Choose sample spectrum:", sample_options)
|
292 |
+
|
293 |
+
if selected_sample != "-- Select Sample --":
|
294 |
+
selected_path = Path(SAMPLE_DATA_DIR) / selected_sample
|
295 |
+
try:
|
296 |
+
with open(selected_path, "r", encoding="utf-8") as f:
|
297 |
+
file_contents = f.read()
|
298 |
+
uploaded_file = StringIO(file_contents)
|
299 |
+
uploaded_file.name = selected_sample
|
300 |
+
st.success(f"β
Loaded sample: {selected_sample}")
|
301 |
+
except Exception as e:
|
302 |
+
st.error(f"Error loading sample: {e}")
|
303 |
+
else:
|
304 |
+
st.info("No sample data available")
|
305 |
+
|
306 |
+
# Update session state
|
307 |
+
if uploaded_file is not None:
|
308 |
+
st.session_state['uploaded_file'] = uploaded_file
|
309 |
+
st.session_state['filename'] = uploaded_file.name
|
310 |
+
st.session_state['status_message'] = f"π File '{uploaded_file.name}' ready for analysis"
|
311 |
+
st.session_state['status_type'] = "success"
|
312 |
+
|
313 |
+
# Status display
|
314 |
+
st.subheader("π¦ Status")
|
315 |
+
status_msg = st.session_state.get("status_message", "Ready")
|
316 |
+
status_type = st.session_state.get("status_type", "info")
|
317 |
+
|
318 |
+
if status_type == "success":
|
319 |
+
st.success(status_msg)
|
320 |
+
elif status_type == "error":
|
321 |
+
st.error(status_msg)
|
322 |
+
else:
|
323 |
+
st.info(status_msg)
|
324 |
+
|
325 |
+
# Load model
|
326 |
+
model, model_loaded = load_model(model_choice)
|
327 |
+
|
328 |
+
# Inference button
|
329 |
+
inference_ready = (
|
330 |
+
'uploaded_file' in st.session_state and
|
331 |
+
st.session_state['uploaded_file'] is not None and
|
332 |
+
model is not None
|
333 |
+
)
|
334 |
+
|
335 |
+
if not model_loaded:
|
336 |
+
st.warning("β οΈ Model weights not available - using demo mode")
|
337 |
+
|
338 |
+
if st.button("βΆοΈ Run Analysis", disabled=not inference_ready, type="primary"):
|
339 |
+
if inference_ready:
|
340 |
+
try:
|
341 |
+
# Get file data
|
342 |
+
uploaded_file = st.session_state['uploaded_file']
|
343 |
+
filename = st.session_state['filename']
|
344 |
+
|
345 |
+
# Read file content
|
346 |
+
uploaded_file.seek(0)
|
347 |
+
raw_data = uploaded_file.read()
|
348 |
+
raw_text = raw_data.decode("utf-8") if isinstance(raw_data, bytes) else raw_data
|
349 |
+
|
350 |
+
# Parse spectrum
|
351 |
+
with st.spinner("Parsing spectrum data..."):
|
352 |
+
x_raw, y_raw = parse_spectrum_data(raw_text)
|
353 |
+
|
354 |
+
# Resample spectrum
|
355 |
+
with st.spinner("Resampling spectrum..."):
|
356 |
+
y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN)
|
357 |
+
|
358 |
+
# Store in session state
|
359 |
+
st.session_state['x_raw'] = x_raw
|
360 |
+
st.session_state['y_raw'] = y_raw
|
361 |
+
st.session_state['y_resampled'] = y_resampled
|
362 |
+
st.session_state['inference_run_once'] = True
|
363 |
+
st.session_state['status_message'] = f"π Analysis completed for: {filename}"
|
364 |
+
st.session_state['status_type'] = "success"
|
365 |
+
|
366 |
+
st.rerun()
|
367 |
+
|
368 |
+
except Exception as e:
|
369 |
+
st.error(f"β Analysis failed: {str(e)}")
|
370 |
+
st.session_state['status_message'] = f"β Error: {str(e)}"
|
371 |
+
st.session_state['status_type'] = "error"
|
372 |
+
|
373 |
+
# Results column
|
374 |
+
with col2:
|
375 |
+
if st.session_state.get("inference_run_once", False):
|
376 |
+
st.subheader("π Analysis Results")
|
377 |
+
|
378 |
+
# Get data from session state
|
379 |
+
x_raw = st.session_state.get('x_raw')
|
380 |
+
y_raw = st.session_state.get('y_raw')
|
381 |
+
y_resampled = st.session_state.get('y_resampled')
|
382 |
+
filename = st.session_state.get('filename', 'Unknown')
|
383 |
+
|
384 |
+
if all(v is not None for v in [x_raw, y_raw, y_resampled]):
|
385 |
+
|
386 |
+
# Create and display plot
|
387 |
+
try:
|
388 |
+
spectrum_plot = create_spectrum_plot(x_raw, y_raw, y_resampled)
|
389 |
+
st.image(spectrum_plot, caption="Spectrum Preprocessing Results", use_column_width=True)
|
390 |
+
except Exception as e:
|
391 |
+
st.warning(f"Could not generate plot: {e}")
|
392 |
+
|
393 |
+
# Run inference
|
394 |
+
try:
|
395 |
+
with st.spinner("Running AI inference..."):
|
396 |
+
start_time = time.time()
|
397 |
+
|
398 |
+
# Prepare input tensor
|
399 |
+
input_tensor = torch.tensor(y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
400 |
+
|
401 |
+
# Run inference
|
402 |
+
model.eval()
|
403 |
+
with torch.no_grad():
|
404 |
+
if model is None:
|
405 |
+
raise ValueError("Model is not loaded. Please check the model configuration or weights.")
|
406 |
+
logits = model(input_tensor)
|
407 |
+
prediction = torch.argmax(logits, dim=1).item()
|
408 |
+
logits_list = logits.detach().numpy().tolist()[0]
|
409 |
+
|
410 |
+
inference_time = time.time() - start_time
|
411 |
+
|
412 |
+
# Clean up memory
|
413 |
+
cleanup_memory()
|
414 |
+
|
415 |
+
# Get ground truth if available
|
416 |
+
true_label_idx = label_file(filename)
|
417 |
+
true_label_str = LABEL_MAP.get(true_label_idx, "Unknown") if true_label_idx is not None else "Unknown"
|
418 |
+
|
419 |
+
# Get prediction
|
420 |
+
predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}")
|
421 |
+
|
422 |
+
# Calculate confidence metrics
|
423 |
+
logit_margin = abs(logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0
|
424 |
+
confidence_desc, confidence_emoji = get_confidence_description(logit_margin)
|
425 |
+
|
426 |
+
# Display results
|
427 |
+
st.markdown("### π― Prediction Results")
|
428 |
+
|
429 |
+
# Main prediction
|
430 |
+
st.markdown(f"""
|
431 |
+
**π¬ Sample**: `{filename}`
|
432 |
+
**π§ Model**: `{model_choice}`
|
433 |
+
**β±οΈ Processing Time**: `{inference_time:.2f}s`
|
434 |
+
""")
|
435 |
+
|
436 |
+
# Prediction box
|
437 |
+
if predicted_class == "Stable (Unweathered)":
|
438 |
+
st.success(f"π’ **Prediction**: {predicted_class}")
|
439 |
+
else:
|
440 |
+
st.warning(f"π‘ **Prediction**: {predicted_class}")
|
441 |
+
|
442 |
+
# Confidence
|
443 |
+
st.markdown(f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})")
|
444 |
+
|
445 |
+
# Ground truth comparison
|
446 |
+
if true_label_idx is not None:
|
447 |
+
if predicted_class == true_label_str:
|
448 |
+
st.success(f"β
**Ground Truth**: {true_label_str} - **Correct!**")
|
449 |
+
else:
|
450 |
+
st.error(f"β **Ground Truth**: {true_label_str} - **Incorrect**")
|
451 |
+
else:
|
452 |
+
st.info("βΉοΈ **Ground Truth**: Unknown (filename doesn't follow naming convention)")
|
453 |
+
|
454 |
+
# Detailed results tabs
|
455 |
+
tab1, tab2, tab3 = st.tabs(["π Details", "π¬ Technical", "π Explanation"])
|
456 |
+
|
457 |
+
with tab1:
|
458 |
+
st.markdown("**Model Output (Logits)**")
|
459 |
+
for i, score in enumerate(logits_list):
|
460 |
+
label = LABEL_MAP.get(i, f"Class {i}")
|
461 |
+
st.metric(label, f"{score:.2f}")
|
462 |
+
|
463 |
+
st.markdown("**Spectrum Statistics**")
|
464 |
+
st.json({
|
465 |
+
"Original Length": len(x_raw),
|
466 |
+
"Resampled Length": TARGET_LEN,
|
467 |
+
"Wavenumber Range": f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ",
|
468 |
+
"Intensity Range": f"{min(y_raw):.1f} - {max(y_raw):.1f}",
|
469 |
+
"Model Confidence": confidence_desc
|
470 |
+
})
|
471 |
+
|
472 |
+
with tab2:
|
473 |
+
st.markdown("**Technical Information**")
|
474 |
+
st.json({
|
475 |
+
"Model Architecture": model_choice,
|
476 |
+
"Input Shape": list(input_tensor.shape),
|
477 |
+
"Output Shape": list(logits.shape),
|
478 |
+
"Inference Time": f"{inference_time:.3f}s",
|
479 |
+
"Device": "CPU",
|
480 |
+
"Model Loaded": model_loaded
|
481 |
+
})
|
482 |
+
|
483 |
+
if not model_loaded:
|
484 |
+
st.warning("β οΈ Demo mode: Using randomly initialized weights")
|
485 |
+
|
486 |
+
with tab3:
|
487 |
+
st.markdown("""
|
488 |
+
**π Analysis Process**
|
489 |
+
|
490 |
+
1. **Data Upload**: Raman spectrum file loaded
|
491 |
+
2. **Preprocessing**: Data parsed and resampled to 500 points
|
492 |
+
3. **AI Inference**: CNN model analyzes spectral patterns
|
493 |
+
4. **Classification**: Binary prediction with confidence scores
|
494 |
+
|
495 |
+
**π§ Model Interpretation**
|
496 |
+
|
497 |
+
The AI model identifies spectral features indicative of:
|
498 |
+
- **Stable polymers**: Well-preserved molecular structure
|
499 |
+
- **Weathered polymers**: Degraded/oxidized molecular bonds
|
500 |
+
|
501 |
+
**π― Applications**
|
502 |
+
|
503 |
+
- Material longevity assessment
|
504 |
+
- Recycling viability evaluation
|
505 |
+
- Quality control in manufacturing
|
506 |
+
- Environmental impact studies
|
507 |
+
""")
|
508 |
+
|
509 |
+
except Exception as e:
|
510 |
+
st.error(f"β Inference failed: {str(e)}")
|
511 |
+
|
512 |
+
else:
|
513 |
+
st.error("β Missing spectrum data. Please upload a file and run analysis.")
|
514 |
+
else:
|
515 |
+
# Welcome message
|
516 |
+
st.markdown("""
|
517 |
+
### π Welcome to AI Polymer Classification
|
518 |
+
|
519 |
+
**Get started by:**
|
520 |
+
1. π§ Select an AI model in the sidebar
|
521 |
+
2. π Upload a Raman spectrum file or choose a sample
|
522 |
+
3. βΆοΈ Click "Run Analysis" to get predictions
|
523 |
+
|
524 |
+
**Supported formats:**
|
525 |
+
- Text files (.txt) with wavenumber and intensity columns
|
526 |
+
- Space or comma-separated values
|
527 |
+
- Any length (automatically resampled to 500 points)
|
528 |
+
|
529 |
+
**Example applications:**
|
530 |
+
- π¬ Research on polymer degradation
|
531 |
+
- β»οΈ Recycling feasibility assessment
|
532 |
+
- π± Sustainability impact studies
|
533 |
+
- π Quality control in manufacturing
|
534 |
+
""")
|
535 |
+
|
536 |
+
# Run the application
|
537 |
+
main()
|