Spaces:
Running
Running
devjas1
commited on
Commit
·
65f2520
1
Parent(s):
4b30bc8
(FEAT): add utility functions for polymer classification app preprocessing
Browse files
deploy/hf-space/utils/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utility functions for the polymer classification app"""
|
2 |
+
from .preprocessing import resample_spectrum
|
3 |
+
|
4 |
+
__all__ = ['resample_spectrum']
|
deploy/hf-space/utils/preprocessing.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Preprocessing utilities for polymer classification app.
|
3 |
+
Adapted from the original scripts/preprocess_dataset.py for Hugging Face Spaces deployment.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from scipy.interpolate import interp1d
|
8 |
+
from scipy.signal import savgol_filter
|
9 |
+
from sklearn.preprocessing import minmax_scale
|
10 |
+
|
11 |
+
# Default resample target
|
12 |
+
TARGET_LENGTH = 500
|
13 |
+
|
14 |
+
def remove_baseline(y):
|
15 |
+
"""Simple baseline correction using polynomial fitting (order 2)"""
|
16 |
+
x = np.arange(len(y))
|
17 |
+
coeffs = np.polyfit(x, y, deg=2)
|
18 |
+
baseline = np.polyval(coeffs, x)
|
19 |
+
return y - baseline
|
20 |
+
|
21 |
+
def normalize_spectrum(y):
|
22 |
+
"""Min-max normalization to [0, 1]"""
|
23 |
+
return minmax_scale(y)
|
24 |
+
|
25 |
+
def smooth_spectrum(y, window_length=11, polyorder=2):
|
26 |
+
"""Apply Savitzky-Golay smoothing."""
|
27 |
+
if len(y) < window_length:
|
28 |
+
window_length = len(y) if len(y) % 2 == 1 else len(y) - 1
|
29 |
+
if window_length < 3:
|
30 |
+
return y
|
31 |
+
return savgol_filter(y, window_length, polyorder)
|
32 |
+
|
33 |
+
def resample_spectrum(x, y, target_len=TARGET_LENGTH):
|
34 |
+
"""
|
35 |
+
Resample a spectrum to a fixed number of points using linear interpolation.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
x (array-like): Wavenumber values
|
39 |
+
y (array-like): Intensity values
|
40 |
+
target_len (int): Target number of points
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
np.ndarray: Resampled intensity values
|
44 |
+
"""
|
45 |
+
# Ensure inputs are numpy arrays
|
46 |
+
x = np.asarray(x)
|
47 |
+
y = np.asarray(y)
|
48 |
+
|
49 |
+
# Check for valid input
|
50 |
+
if len(x) != len(y):
|
51 |
+
raise ValueError(f"x and y must have same length: {len(x)} vs {len(y)}")
|
52 |
+
|
53 |
+
if len(x) < 2:
|
54 |
+
raise ValueError("Need at least 2 points for interpolation")
|
55 |
+
|
56 |
+
# Sort by x values to ensure monotonic order
|
57 |
+
sort_idx = np.argsort(x)
|
58 |
+
x_sorted = x[sort_idx]
|
59 |
+
y_sorted = y[sort_idx]
|
60 |
+
|
61 |
+
# Check for duplicate x values
|
62 |
+
if len(np.unique(x_sorted)) != len(x_sorted):
|
63 |
+
# Remove duplicates by averaging y values for same x
|
64 |
+
x_unique, inverse_indices = np.unique(x_sorted, return_inverse=True)
|
65 |
+
y_unique = np.zeros_like(x_unique, dtype=float)
|
66 |
+
for i in range(len(x_unique)):
|
67 |
+
mask = inverse_indices == i
|
68 |
+
y_unique[i] = np.mean(y_sorted[mask])
|
69 |
+
x_sorted, y_sorted = x_unique, y_unique
|
70 |
+
|
71 |
+
# Create interpolation function
|
72 |
+
f_interp = interp1d(x_sorted, y_sorted, kind='linear', bounds_error=False, fill_value=np.nan)
|
73 |
+
|
74 |
+
# Generate uniform grid
|
75 |
+
x_uniform = np.linspace(min(x_sorted), max(x_sorted), target_len)
|
76 |
+
y_uniform = f_interp(x_uniform)
|
77 |
+
|
78 |
+
return y_uniform
|
79 |
+
|
80 |
+
def preprocess_spectrum(x, y, target_len=500, baseline_correction=False,
|
81 |
+
apply_smoothing=False, normalize=False):
|
82 |
+
"""
|
83 |
+
Complete preprocessing pipeline for a single spectrum.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
x (array-like): Wavenumber values
|
87 |
+
y (array-like): Intensity values
|
88 |
+
target_len (int): Number of points to resample to
|
89 |
+
baseline_correction (bool): Whether to apply baseline removal
|
90 |
+
apply_smoothing (bool): Whether to apply Savitzky-Golay smoothing
|
91 |
+
normalize (bool): Whether to apply min-max normalization
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
np.ndarray: Preprocessed spectrum
|
95 |
+
"""
|
96 |
+
# Resample first
|
97 |
+
y_processed = resample_spectrum(x, y, target_len=target_len)
|
98 |
+
|
99 |
+
# Optional preprocessing steps
|
100 |
+
if baseline_correction:
|
101 |
+
y_processed = remove_baseline(y_processed)
|
102 |
+
|
103 |
+
if apply_smoothing:
|
104 |
+
y_processed = smooth_spectrum(y_processed)
|
105 |
+
|
106 |
+
if normalize:
|
107 |
+
y_processed = normalize_spectrum(y_processed)
|
108 |
+
|
109 |
+
return y_processed
|