Spaces:
Running
Running
devjas1
commited on
Commit
·
6e2806f
1
Parent(s):
a602039
(TESTS)[Comprehensive Test Suite for Training Manager]: Validate training manager, config, data loading, augmentation, and metrics
Browse files- Added extensive tests covering job submission, execution, device selection, job listing, and error handling for invalid paths.
- Validated cross-validation strategies, including fallback logic for unknown strategies.
- Tested spectroscopy metrics, spectral similarity, and data augmentation to ensure robust domain-specific evaluation.
- Enhanced tests for secure and versatile dataset loading, supporting CSV, JSON, and TXT formats with proper class balance.
- Ensured all new features and edge cases are covered to maintain reliability and future extensibility of training backend.
- tests/test_training_manager.py +368 -0
tests/test_training_manager.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests for the training manager functionality.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import pytest
|
6 |
+
import tempfile
|
7 |
+
import shutil
|
8 |
+
from pathlib import Path
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import json
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
from utils.training_manager import (
|
15 |
+
TrainingManager,
|
16 |
+
TrainingConfig,
|
17 |
+
TrainingStatus,
|
18 |
+
get_training_manager,
|
19 |
+
CVStrategy,
|
20 |
+
get_cv_splitter,
|
21 |
+
calculate_spectroscopy_metrics,
|
22 |
+
augment_spectral_data,
|
23 |
+
spectral_cosine_similarity,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def create_test_dataset(dataset_path: Path, num_samples: int = 10):
|
28 |
+
"""Create a test dataset for training"""
|
29 |
+
# Create directories
|
30 |
+
(dataset_path / "stable").mkdir(parents=True, exist_ok=True)
|
31 |
+
(dataset_path / "weathered").mkdir(parents=True, exist_ok=True)
|
32 |
+
|
33 |
+
# Generate synthetic spectra
|
34 |
+
wavenumbers = np.linspace(400, 4000, 200)
|
35 |
+
|
36 |
+
for i in range(num_samples // 2):
|
37 |
+
# Stable samples
|
38 |
+
intensities = np.random.normal(0.5, 0.1, len(wavenumbers))
|
39 |
+
data = np.column_stack([wavenumbers, intensities])
|
40 |
+
np.savetxt(dataset_path / "stable" / f"stable_{i}.txt", data)
|
41 |
+
|
42 |
+
# Weathered samples
|
43 |
+
intensities = np.random.normal(0.3, 0.1, len(wavenumbers))
|
44 |
+
data = np.column_stack([wavenumbers, intensities])
|
45 |
+
np.savetxt(dataset_path / "weathered" / f"weathered_{i}.txt", data)
|
46 |
+
|
47 |
+
|
48 |
+
@pytest.fixture
|
49 |
+
def temp_dataset():
|
50 |
+
"""Create temporary dataset for testing"""
|
51 |
+
temp_dir = Path(tempfile.mkdtemp())
|
52 |
+
dataset_path = temp_dir / "test_dataset"
|
53 |
+
create_test_dataset(dataset_path)
|
54 |
+
yield dataset_path
|
55 |
+
shutil.rmtree(temp_dir)
|
56 |
+
|
57 |
+
|
58 |
+
@pytest.fixture
|
59 |
+
def training_manager():
|
60 |
+
"""Create training manager for testing"""
|
61 |
+
temp_dir = Path(tempfile.mkdtemp())
|
62 |
+
# Use ThreadPoolExecutor for tests to avoid multiprocessing complexities
|
63 |
+
manager = TrainingManager(
|
64 |
+
max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False
|
65 |
+
)
|
66 |
+
yield manager
|
67 |
+
manager.shutdown()
|
68 |
+
shutil.rmtree(temp_dir)
|
69 |
+
|
70 |
+
|
71 |
+
def test_training_config():
|
72 |
+
"""Test training configuration creation"""
|
73 |
+
config = TrainingConfig(
|
74 |
+
model_name="figure2", dataset_path="/test/path", epochs=5, batch_size=8
|
75 |
+
)
|
76 |
+
|
77 |
+
assert config.model_name == "figure2"
|
78 |
+
assert config.epochs == 5
|
79 |
+
assert config.batch_size == 8
|
80 |
+
assert config.device == "auto"
|
81 |
+
|
82 |
+
|
83 |
+
def test_training_manager_initialization(training_manager):
|
84 |
+
"""Test training manager initialization"""
|
85 |
+
assert training_manager.max_workers == 1
|
86 |
+
assert len(training_manager.jobs) == 0
|
87 |
+
|
88 |
+
|
89 |
+
def test_submit_training_job(training_manager, temp_dataset):
|
90 |
+
"""Test submitting a training job"""
|
91 |
+
config = TrainingConfig(
|
92 |
+
model_name="figure2", dataset_path=str(temp_dataset), epochs=1, batch_size=4
|
93 |
+
)
|
94 |
+
|
95 |
+
job_id = training_manager.submit_training_job(config)
|
96 |
+
|
97 |
+
assert job_id is not None
|
98 |
+
assert len(job_id) > 0
|
99 |
+
assert job_id in training_manager.jobs
|
100 |
+
|
101 |
+
job = training_manager.get_job_status(job_id)
|
102 |
+
assert job is not None
|
103 |
+
assert job.config.model_name == "figure2"
|
104 |
+
|
105 |
+
|
106 |
+
def test_training_job_execution(training_manager, temp_dataset):
|
107 |
+
"""Test actual training job execution (lightweight test)"""
|
108 |
+
config = TrainingConfig(
|
109 |
+
model_name="figure2",
|
110 |
+
dataset_path=str(temp_dataset),
|
111 |
+
epochs=1,
|
112 |
+
num_folds=2, # Reduced for testing
|
113 |
+
batch_size=4,
|
114 |
+
)
|
115 |
+
|
116 |
+
job_id = training_manager.submit_training_job(config)
|
117 |
+
|
118 |
+
# Wait a moment for job to start
|
119 |
+
import time
|
120 |
+
|
121 |
+
time.sleep(1)
|
122 |
+
|
123 |
+
job = training_manager.get_job_status(job_id)
|
124 |
+
assert job.status in [
|
125 |
+
TrainingStatus.PENDING,
|
126 |
+
TrainingStatus.RUNNING,
|
127 |
+
TrainingStatus.COMPLETED,
|
128 |
+
TrainingStatus.FAILED,
|
129 |
+
]
|
130 |
+
|
131 |
+
|
132 |
+
def test_list_jobs(training_manager, temp_dataset):
|
133 |
+
"""Test listing jobs with filters"""
|
134 |
+
config = TrainingConfig(
|
135 |
+
model_name="figure2", dataset_path=str(temp_dataset), epochs=1
|
136 |
+
)
|
137 |
+
|
138 |
+
job_id = training_manager.submit_training_job(config)
|
139 |
+
|
140 |
+
all_jobs = training_manager.list_jobs()
|
141 |
+
assert len(all_jobs) >= 1
|
142 |
+
|
143 |
+
pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING)
|
144 |
+
running_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
|
145 |
+
|
146 |
+
# Job should be in one of these states
|
147 |
+
assert len(pending_jobs) + len(running_jobs) >= 1
|
148 |
+
|
149 |
+
|
150 |
+
def test_global_training_manager():
|
151 |
+
"""Test global training manager singleton"""
|
152 |
+
manager1 = get_training_manager()
|
153 |
+
manager2 = get_training_manager()
|
154 |
+
|
155 |
+
assert manager1 is manager2 # Should be same instance
|
156 |
+
|
157 |
+
|
158 |
+
def test_device_selection(training_manager):
|
159 |
+
"""Test device selection logic"""
|
160 |
+
# Test auto device selection
|
161 |
+
device = training_manager._get_device("auto")
|
162 |
+
assert device.type in ["cpu", "cuda"]
|
163 |
+
|
164 |
+
# Test CPU selection
|
165 |
+
device = training_manager._get_device("cpu")
|
166 |
+
assert device.type == "cpu"
|
167 |
+
|
168 |
+
# Test CUDA selection (should fallback to CPU if not available)
|
169 |
+
device = training_manager._get_device("cuda")
|
170 |
+
if torch.cuda.is_available():
|
171 |
+
assert device.type == "cuda"
|
172 |
+
else:
|
173 |
+
assert device.type == "cpu"
|
174 |
+
|
175 |
+
|
176 |
+
def test_invalid_dataset_path(training_manager):
|
177 |
+
"""Test handling of invalid dataset path"""
|
178 |
+
config = TrainingConfig(
|
179 |
+
model_name="figure2", dataset_path="/nonexistent/path", epochs=1
|
180 |
+
)
|
181 |
+
|
182 |
+
job_id = training_manager.submit_training_job(config)
|
183 |
+
|
184 |
+
# Wait for job to process
|
185 |
+
import time
|
186 |
+
|
187 |
+
time.sleep(2)
|
188 |
+
|
189 |
+
job = training_manager.get_job_status(job_id)
|
190 |
+
assert job.status == TrainingStatus.FAILED
|
191 |
+
assert "dataset" in job.error_message.lower()
|
192 |
+
|
193 |
+
|
194 |
+
def test_configurable_cv_strategies():
|
195 |
+
"""Test different cross-validation strategies"""
|
196 |
+
# Test StratifiedKFold
|
197 |
+
skf = get_cv_splitter("stratified_kfold", n_splits=5)
|
198 |
+
assert hasattr(skf, "split")
|
199 |
+
|
200 |
+
# Test KFold
|
201 |
+
kf = get_cv_splitter("kfold", n_splits=5)
|
202 |
+
assert hasattr(kf, "split")
|
203 |
+
|
204 |
+
# Test TimeSeriesSplit
|
205 |
+
tss = get_cv_splitter("time_series_split", n_splits=5)
|
206 |
+
assert hasattr(tss, "split")
|
207 |
+
|
208 |
+
# Test default fallback
|
209 |
+
default = get_cv_splitter("invalid_strategy", n_splits=5)
|
210 |
+
assert hasattr(default, "split")
|
211 |
+
|
212 |
+
|
213 |
+
def test_spectroscopy_metrics():
|
214 |
+
"""Test spectroscopy-specific metrics calculation"""
|
215 |
+
# Create test data
|
216 |
+
y_true = np.array([0, 0, 1, 1, 0, 1])
|
217 |
+
y_pred = np.array([0, 1, 1, 1, 0, 0])
|
218 |
+
probabilities = np.array(
|
219 |
+
[[0.8, 0.2], [0.4, 0.6], [0.3, 0.7], [0.2, 0.8], [0.9, 0.1], [0.6, 0.4]]
|
220 |
+
)
|
221 |
+
|
222 |
+
metrics = calculate_spectroscopy_metrics(y_true, y_pred, probabilities)
|
223 |
+
|
224 |
+
# Check that all expected metrics are present
|
225 |
+
assert "accuracy" in metrics
|
226 |
+
assert "f1_score" in metrics
|
227 |
+
assert "cosine_similarity" in metrics
|
228 |
+
assert "distribution_similarity" in metrics
|
229 |
+
|
230 |
+
# Check that metrics are reasonable
|
231 |
+
assert 0 <= metrics["accuracy"] <= 1
|
232 |
+
assert 0 <= metrics["f1_score"] <= 1
|
233 |
+
assert -1 <= metrics["cosine_similarity"] <= 1
|
234 |
+
assert 0 <= metrics["distribution_similarity"] <= 1
|
235 |
+
|
236 |
+
|
237 |
+
def test_spectral_cosine_similarity():
|
238 |
+
"""Test cosine similarity calculation for spectral data"""
|
239 |
+
# Create test spectra
|
240 |
+
spectrum1 = np.array([1, 2, 3, 4, 5])
|
241 |
+
spectrum2 = np.array([2, 4, 6, 8, 10]) # Perfect correlation
|
242 |
+
spectrum3 = np.array([5, 4, 3, 2, 1]) # Anti-correlation
|
243 |
+
|
244 |
+
# Test perfect correlation
|
245 |
+
sim1 = spectral_cosine_similarity(spectrum1, spectrum2)
|
246 |
+
assert abs(sim1 - 1.0) < 1e-10
|
247 |
+
|
248 |
+
# Test that similarity exists
|
249 |
+
sim2 = spectral_cosine_similarity(spectrum1, spectrum3)
|
250 |
+
assert -1 <= sim2 <= 1 # Valid cosine similarity range
|
251 |
+
|
252 |
+
# Test self-similarity
|
253 |
+
sim3 = spectral_cosine_similarity(spectrum1, spectrum1)
|
254 |
+
assert abs(sim3 - 1.0) < 1e-10
|
255 |
+
|
256 |
+
|
257 |
+
def test_data_augmentation():
|
258 |
+
"""Test spectral data augmentation"""
|
259 |
+
# Create test data
|
260 |
+
X = np.random.rand(10, 100)
|
261 |
+
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
|
262 |
+
|
263 |
+
# Test augmentation
|
264 |
+
X_aug, y_aug = augment_spectral_data(X, y, noise_level=0.01, augmentation_factor=3)
|
265 |
+
|
266 |
+
# Check that data is augmented
|
267 |
+
assert X_aug.shape[0] == X.shape[0] * 3
|
268 |
+
assert y_aug.shape[0] == y.shape[0] * 3
|
269 |
+
assert X_aug.shape[1] == X.shape[1] # Same number of features
|
270 |
+
|
271 |
+
# Test no augmentation
|
272 |
+
X_no_aug, y_no_aug = augment_spectral_data(X, y, augmentation_factor=1)
|
273 |
+
assert np.array_equal(X_no_aug, X)
|
274 |
+
assert np.array_equal(y_no_aug, y)
|
275 |
+
|
276 |
+
|
277 |
+
def test_enhanced_training_config():
|
278 |
+
"""Test enhanced training configuration with new parameters"""
|
279 |
+
config = TrainingConfig(
|
280 |
+
model_name="figure2",
|
281 |
+
dataset_path="/test/path",
|
282 |
+
cv_strategy="time_series_split",
|
283 |
+
enable_augmentation=True,
|
284 |
+
noise_level=0.02,
|
285 |
+
spectral_weight=0.2,
|
286 |
+
)
|
287 |
+
|
288 |
+
assert config.cv_strategy == "time_series_split"
|
289 |
+
assert config.enable_augmentation == True
|
290 |
+
assert config.noise_level == 0.02
|
291 |
+
assert config.spectral_weight == 0.2
|
292 |
+
|
293 |
+
# Test serialization includes new fields
|
294 |
+
config_dict = config.to_dict()
|
295 |
+
assert "cv_strategy" in config_dict
|
296 |
+
assert "enable_augmentation" in config_dict
|
297 |
+
assert "noise_level" in config_dict
|
298 |
+
assert "spectral_weight" in config_dict
|
299 |
+
|
300 |
+
|
301 |
+
def test_enhanced_dataset_loading_security():
|
302 |
+
"""Test enhanced dataset loading with security features"""
|
303 |
+
temp_dir = Path(tempfile.mkdtemp())
|
304 |
+
training_manager = TrainingManager(
|
305 |
+
max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False
|
306 |
+
)
|
307 |
+
|
308 |
+
try:
|
309 |
+
# Create a test dataset with different file formats
|
310 |
+
dataset_dir = temp_dir / "test_dataset"
|
311 |
+
(dataset_dir / "stable").mkdir(parents=True)
|
312 |
+
(dataset_dir / "weathered").mkdir(parents=True)
|
313 |
+
|
314 |
+
# Create multiple files to meet minimum requirements
|
315 |
+
for i in range(6): # Create 6 files per class
|
316 |
+
# Create CSV files
|
317 |
+
csv_data = pd.DataFrame(
|
318 |
+
{
|
319 |
+
"wavenumber": np.linspace(400, 4000, 100),
|
320 |
+
"intensity": np.random.rand(100),
|
321 |
+
}
|
322 |
+
)
|
323 |
+
csv_data.to_csv(
|
324 |
+
dataset_dir / "stable" / f"test_stable_{i}.csv", index=False
|
325 |
+
)
|
326 |
+
|
327 |
+
# Create JSON files
|
328 |
+
json_data = {
|
329 |
+
"x": np.linspace(400, 4000, 100).tolist(),
|
330 |
+
"y": np.random.rand(100).tolist(),
|
331 |
+
}
|
332 |
+
with open(dataset_dir / "weathered" / f"test_weathered_{i}.json", "w") as f:
|
333 |
+
json.dump(json_data, f)
|
334 |
+
|
335 |
+
# Test configuration with enhanced features
|
336 |
+
config = TrainingConfig(
|
337 |
+
model_name="figure2",
|
338 |
+
dataset_path=str(dataset_dir),
|
339 |
+
epochs=1,
|
340 |
+
cv_strategy="kfold",
|
341 |
+
enable_augmentation=True,
|
342 |
+
noise_level=0.01,
|
343 |
+
)
|
344 |
+
|
345 |
+
# Test that the enhanced loading works
|
346 |
+
from utils.training_manager import TrainingJob, TrainingProgress
|
347 |
+
|
348 |
+
job = TrainingJob(job_id="test", config=config, progress=TrainingProgress())
|
349 |
+
|
350 |
+
# This should work with the enhanced data loading
|
351 |
+
X, y = training_manager._load_and_preprocess_data(job)
|
352 |
+
|
353 |
+
# Should load data from multiple formats
|
354 |
+
assert X is not None
|
355 |
+
assert y is not None
|
356 |
+
assert len(X) >= 10 # Should have at least 10 samples total
|
357 |
+
|
358 |
+
# Test that we have both classes
|
359 |
+
unique_classes = np.unique(y)
|
360 |
+
assert len(unique_classes) >= 2
|
361 |
+
|
362 |
+
finally:
|
363 |
+
training_manager.shutdown()
|
364 |
+
shutil.rmtree(temp_dir)
|
365 |
+
|
366 |
+
|
367 |
+
if __name__ == "__main__":
|
368 |
+
pytest.main([__file__])
|