Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
6e2806f
1
Parent(s):
a602039
(TESTS)[Comprehensive Test Suite for Training Manager]: Validate training manager, config, data loading, augmentation, and metrics
Browse files- Added extensive tests covering job submission, execution, device selection, job listing, and error handling for invalid paths.
- Validated cross-validation strategies, including fallback logic for unknown strategies.
- Tested spectroscopy metrics, spectral similarity, and data augmentation to ensure robust domain-specific evaluation.
- Enhanced tests for secure and versatile dataset loading, supporting CSV, JSON, and TXT formats with proper class balance.
- Ensured all new features and edge cases are covered to maintain reliability and future extensibility of training backend.
- tests/test_training_manager.py +368 -0
tests/test_training_manager.py
ADDED
|
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Tests for the training manager functionality.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import pytest
|
| 6 |
+
import tempfile
|
| 7 |
+
import shutil
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
import json
|
| 12 |
+
import pandas as pd
|
| 13 |
+
|
| 14 |
+
from utils.training_manager import (
|
| 15 |
+
TrainingManager,
|
| 16 |
+
TrainingConfig,
|
| 17 |
+
TrainingStatus,
|
| 18 |
+
get_training_manager,
|
| 19 |
+
CVStrategy,
|
| 20 |
+
get_cv_splitter,
|
| 21 |
+
calculate_spectroscopy_metrics,
|
| 22 |
+
augment_spectral_data,
|
| 23 |
+
spectral_cosine_similarity,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def create_test_dataset(dataset_path: Path, num_samples: int = 10):
|
| 28 |
+
"""Create a test dataset for training"""
|
| 29 |
+
# Create directories
|
| 30 |
+
(dataset_path / "stable").mkdir(parents=True, exist_ok=True)
|
| 31 |
+
(dataset_path / "weathered").mkdir(parents=True, exist_ok=True)
|
| 32 |
+
|
| 33 |
+
# Generate synthetic spectra
|
| 34 |
+
wavenumbers = np.linspace(400, 4000, 200)
|
| 35 |
+
|
| 36 |
+
for i in range(num_samples // 2):
|
| 37 |
+
# Stable samples
|
| 38 |
+
intensities = np.random.normal(0.5, 0.1, len(wavenumbers))
|
| 39 |
+
data = np.column_stack([wavenumbers, intensities])
|
| 40 |
+
np.savetxt(dataset_path / "stable" / f"stable_{i}.txt", data)
|
| 41 |
+
|
| 42 |
+
# Weathered samples
|
| 43 |
+
intensities = np.random.normal(0.3, 0.1, len(wavenumbers))
|
| 44 |
+
data = np.column_stack([wavenumbers, intensities])
|
| 45 |
+
np.savetxt(dataset_path / "weathered" / f"weathered_{i}.txt", data)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@pytest.fixture
|
| 49 |
+
def temp_dataset():
|
| 50 |
+
"""Create temporary dataset for testing"""
|
| 51 |
+
temp_dir = Path(tempfile.mkdtemp())
|
| 52 |
+
dataset_path = temp_dir / "test_dataset"
|
| 53 |
+
create_test_dataset(dataset_path)
|
| 54 |
+
yield dataset_path
|
| 55 |
+
shutil.rmtree(temp_dir)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@pytest.fixture
|
| 59 |
+
def training_manager():
|
| 60 |
+
"""Create training manager for testing"""
|
| 61 |
+
temp_dir = Path(tempfile.mkdtemp())
|
| 62 |
+
# Use ThreadPoolExecutor for tests to avoid multiprocessing complexities
|
| 63 |
+
manager = TrainingManager(
|
| 64 |
+
max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False
|
| 65 |
+
)
|
| 66 |
+
yield manager
|
| 67 |
+
manager.shutdown()
|
| 68 |
+
shutil.rmtree(temp_dir)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def test_training_config():
|
| 72 |
+
"""Test training configuration creation"""
|
| 73 |
+
config = TrainingConfig(
|
| 74 |
+
model_name="figure2", dataset_path="/test/path", epochs=5, batch_size=8
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
assert config.model_name == "figure2"
|
| 78 |
+
assert config.epochs == 5
|
| 79 |
+
assert config.batch_size == 8
|
| 80 |
+
assert config.device == "auto"
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def test_training_manager_initialization(training_manager):
|
| 84 |
+
"""Test training manager initialization"""
|
| 85 |
+
assert training_manager.max_workers == 1
|
| 86 |
+
assert len(training_manager.jobs) == 0
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def test_submit_training_job(training_manager, temp_dataset):
|
| 90 |
+
"""Test submitting a training job"""
|
| 91 |
+
config = TrainingConfig(
|
| 92 |
+
model_name="figure2", dataset_path=str(temp_dataset), epochs=1, batch_size=4
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
job_id = training_manager.submit_training_job(config)
|
| 96 |
+
|
| 97 |
+
assert job_id is not None
|
| 98 |
+
assert len(job_id) > 0
|
| 99 |
+
assert job_id in training_manager.jobs
|
| 100 |
+
|
| 101 |
+
job = training_manager.get_job_status(job_id)
|
| 102 |
+
assert job is not None
|
| 103 |
+
assert job.config.model_name == "figure2"
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def test_training_job_execution(training_manager, temp_dataset):
|
| 107 |
+
"""Test actual training job execution (lightweight test)"""
|
| 108 |
+
config = TrainingConfig(
|
| 109 |
+
model_name="figure2",
|
| 110 |
+
dataset_path=str(temp_dataset),
|
| 111 |
+
epochs=1,
|
| 112 |
+
num_folds=2, # Reduced for testing
|
| 113 |
+
batch_size=4,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
job_id = training_manager.submit_training_job(config)
|
| 117 |
+
|
| 118 |
+
# Wait a moment for job to start
|
| 119 |
+
import time
|
| 120 |
+
|
| 121 |
+
time.sleep(1)
|
| 122 |
+
|
| 123 |
+
job = training_manager.get_job_status(job_id)
|
| 124 |
+
assert job.status in [
|
| 125 |
+
TrainingStatus.PENDING,
|
| 126 |
+
TrainingStatus.RUNNING,
|
| 127 |
+
TrainingStatus.COMPLETED,
|
| 128 |
+
TrainingStatus.FAILED,
|
| 129 |
+
]
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def test_list_jobs(training_manager, temp_dataset):
|
| 133 |
+
"""Test listing jobs with filters"""
|
| 134 |
+
config = TrainingConfig(
|
| 135 |
+
model_name="figure2", dataset_path=str(temp_dataset), epochs=1
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
job_id = training_manager.submit_training_job(config)
|
| 139 |
+
|
| 140 |
+
all_jobs = training_manager.list_jobs()
|
| 141 |
+
assert len(all_jobs) >= 1
|
| 142 |
+
|
| 143 |
+
pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING)
|
| 144 |
+
running_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
|
| 145 |
+
|
| 146 |
+
# Job should be in one of these states
|
| 147 |
+
assert len(pending_jobs) + len(running_jobs) >= 1
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def test_global_training_manager():
|
| 151 |
+
"""Test global training manager singleton"""
|
| 152 |
+
manager1 = get_training_manager()
|
| 153 |
+
manager2 = get_training_manager()
|
| 154 |
+
|
| 155 |
+
assert manager1 is manager2 # Should be same instance
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def test_device_selection(training_manager):
|
| 159 |
+
"""Test device selection logic"""
|
| 160 |
+
# Test auto device selection
|
| 161 |
+
device = training_manager._get_device("auto")
|
| 162 |
+
assert device.type in ["cpu", "cuda"]
|
| 163 |
+
|
| 164 |
+
# Test CPU selection
|
| 165 |
+
device = training_manager._get_device("cpu")
|
| 166 |
+
assert device.type == "cpu"
|
| 167 |
+
|
| 168 |
+
# Test CUDA selection (should fallback to CPU if not available)
|
| 169 |
+
device = training_manager._get_device("cuda")
|
| 170 |
+
if torch.cuda.is_available():
|
| 171 |
+
assert device.type == "cuda"
|
| 172 |
+
else:
|
| 173 |
+
assert device.type == "cpu"
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def test_invalid_dataset_path(training_manager):
|
| 177 |
+
"""Test handling of invalid dataset path"""
|
| 178 |
+
config = TrainingConfig(
|
| 179 |
+
model_name="figure2", dataset_path="/nonexistent/path", epochs=1
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
job_id = training_manager.submit_training_job(config)
|
| 183 |
+
|
| 184 |
+
# Wait for job to process
|
| 185 |
+
import time
|
| 186 |
+
|
| 187 |
+
time.sleep(2)
|
| 188 |
+
|
| 189 |
+
job = training_manager.get_job_status(job_id)
|
| 190 |
+
assert job.status == TrainingStatus.FAILED
|
| 191 |
+
assert "dataset" in job.error_message.lower()
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def test_configurable_cv_strategies():
|
| 195 |
+
"""Test different cross-validation strategies"""
|
| 196 |
+
# Test StratifiedKFold
|
| 197 |
+
skf = get_cv_splitter("stratified_kfold", n_splits=5)
|
| 198 |
+
assert hasattr(skf, "split")
|
| 199 |
+
|
| 200 |
+
# Test KFold
|
| 201 |
+
kf = get_cv_splitter("kfold", n_splits=5)
|
| 202 |
+
assert hasattr(kf, "split")
|
| 203 |
+
|
| 204 |
+
# Test TimeSeriesSplit
|
| 205 |
+
tss = get_cv_splitter("time_series_split", n_splits=5)
|
| 206 |
+
assert hasattr(tss, "split")
|
| 207 |
+
|
| 208 |
+
# Test default fallback
|
| 209 |
+
default = get_cv_splitter("invalid_strategy", n_splits=5)
|
| 210 |
+
assert hasattr(default, "split")
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def test_spectroscopy_metrics():
|
| 214 |
+
"""Test spectroscopy-specific metrics calculation"""
|
| 215 |
+
# Create test data
|
| 216 |
+
y_true = np.array([0, 0, 1, 1, 0, 1])
|
| 217 |
+
y_pred = np.array([0, 1, 1, 1, 0, 0])
|
| 218 |
+
probabilities = np.array(
|
| 219 |
+
[[0.8, 0.2], [0.4, 0.6], [0.3, 0.7], [0.2, 0.8], [0.9, 0.1], [0.6, 0.4]]
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
metrics = calculate_spectroscopy_metrics(y_true, y_pred, probabilities)
|
| 223 |
+
|
| 224 |
+
# Check that all expected metrics are present
|
| 225 |
+
assert "accuracy" in metrics
|
| 226 |
+
assert "f1_score" in metrics
|
| 227 |
+
assert "cosine_similarity" in metrics
|
| 228 |
+
assert "distribution_similarity" in metrics
|
| 229 |
+
|
| 230 |
+
# Check that metrics are reasonable
|
| 231 |
+
assert 0 <= metrics["accuracy"] <= 1
|
| 232 |
+
assert 0 <= metrics["f1_score"] <= 1
|
| 233 |
+
assert -1 <= metrics["cosine_similarity"] <= 1
|
| 234 |
+
assert 0 <= metrics["distribution_similarity"] <= 1
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def test_spectral_cosine_similarity():
|
| 238 |
+
"""Test cosine similarity calculation for spectral data"""
|
| 239 |
+
# Create test spectra
|
| 240 |
+
spectrum1 = np.array([1, 2, 3, 4, 5])
|
| 241 |
+
spectrum2 = np.array([2, 4, 6, 8, 10]) # Perfect correlation
|
| 242 |
+
spectrum3 = np.array([5, 4, 3, 2, 1]) # Anti-correlation
|
| 243 |
+
|
| 244 |
+
# Test perfect correlation
|
| 245 |
+
sim1 = spectral_cosine_similarity(spectrum1, spectrum2)
|
| 246 |
+
assert abs(sim1 - 1.0) < 1e-10
|
| 247 |
+
|
| 248 |
+
# Test that similarity exists
|
| 249 |
+
sim2 = spectral_cosine_similarity(spectrum1, spectrum3)
|
| 250 |
+
assert -1 <= sim2 <= 1 # Valid cosine similarity range
|
| 251 |
+
|
| 252 |
+
# Test self-similarity
|
| 253 |
+
sim3 = spectral_cosine_similarity(spectrum1, spectrum1)
|
| 254 |
+
assert abs(sim3 - 1.0) < 1e-10
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def test_data_augmentation():
|
| 258 |
+
"""Test spectral data augmentation"""
|
| 259 |
+
# Create test data
|
| 260 |
+
X = np.random.rand(10, 100)
|
| 261 |
+
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
|
| 262 |
+
|
| 263 |
+
# Test augmentation
|
| 264 |
+
X_aug, y_aug = augment_spectral_data(X, y, noise_level=0.01, augmentation_factor=3)
|
| 265 |
+
|
| 266 |
+
# Check that data is augmented
|
| 267 |
+
assert X_aug.shape[0] == X.shape[0] * 3
|
| 268 |
+
assert y_aug.shape[0] == y.shape[0] * 3
|
| 269 |
+
assert X_aug.shape[1] == X.shape[1] # Same number of features
|
| 270 |
+
|
| 271 |
+
# Test no augmentation
|
| 272 |
+
X_no_aug, y_no_aug = augment_spectral_data(X, y, augmentation_factor=1)
|
| 273 |
+
assert np.array_equal(X_no_aug, X)
|
| 274 |
+
assert np.array_equal(y_no_aug, y)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def test_enhanced_training_config():
|
| 278 |
+
"""Test enhanced training configuration with new parameters"""
|
| 279 |
+
config = TrainingConfig(
|
| 280 |
+
model_name="figure2",
|
| 281 |
+
dataset_path="/test/path",
|
| 282 |
+
cv_strategy="time_series_split",
|
| 283 |
+
enable_augmentation=True,
|
| 284 |
+
noise_level=0.02,
|
| 285 |
+
spectral_weight=0.2,
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
assert config.cv_strategy == "time_series_split"
|
| 289 |
+
assert config.enable_augmentation == True
|
| 290 |
+
assert config.noise_level == 0.02
|
| 291 |
+
assert config.spectral_weight == 0.2
|
| 292 |
+
|
| 293 |
+
# Test serialization includes new fields
|
| 294 |
+
config_dict = config.to_dict()
|
| 295 |
+
assert "cv_strategy" in config_dict
|
| 296 |
+
assert "enable_augmentation" in config_dict
|
| 297 |
+
assert "noise_level" in config_dict
|
| 298 |
+
assert "spectral_weight" in config_dict
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def test_enhanced_dataset_loading_security():
|
| 302 |
+
"""Test enhanced dataset loading with security features"""
|
| 303 |
+
temp_dir = Path(tempfile.mkdtemp())
|
| 304 |
+
training_manager = TrainingManager(
|
| 305 |
+
max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
try:
|
| 309 |
+
# Create a test dataset with different file formats
|
| 310 |
+
dataset_dir = temp_dir / "test_dataset"
|
| 311 |
+
(dataset_dir / "stable").mkdir(parents=True)
|
| 312 |
+
(dataset_dir / "weathered").mkdir(parents=True)
|
| 313 |
+
|
| 314 |
+
# Create multiple files to meet minimum requirements
|
| 315 |
+
for i in range(6): # Create 6 files per class
|
| 316 |
+
# Create CSV files
|
| 317 |
+
csv_data = pd.DataFrame(
|
| 318 |
+
{
|
| 319 |
+
"wavenumber": np.linspace(400, 4000, 100),
|
| 320 |
+
"intensity": np.random.rand(100),
|
| 321 |
+
}
|
| 322 |
+
)
|
| 323 |
+
csv_data.to_csv(
|
| 324 |
+
dataset_dir / "stable" / f"test_stable_{i}.csv", index=False
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# Create JSON files
|
| 328 |
+
json_data = {
|
| 329 |
+
"x": np.linspace(400, 4000, 100).tolist(),
|
| 330 |
+
"y": np.random.rand(100).tolist(),
|
| 331 |
+
}
|
| 332 |
+
with open(dataset_dir / "weathered" / f"test_weathered_{i}.json", "w") as f:
|
| 333 |
+
json.dump(json_data, f)
|
| 334 |
+
|
| 335 |
+
# Test configuration with enhanced features
|
| 336 |
+
config = TrainingConfig(
|
| 337 |
+
model_name="figure2",
|
| 338 |
+
dataset_path=str(dataset_dir),
|
| 339 |
+
epochs=1,
|
| 340 |
+
cv_strategy="kfold",
|
| 341 |
+
enable_augmentation=True,
|
| 342 |
+
noise_level=0.01,
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# Test that the enhanced loading works
|
| 346 |
+
from utils.training_manager import TrainingJob, TrainingProgress
|
| 347 |
+
|
| 348 |
+
job = TrainingJob(job_id="test", config=config, progress=TrainingProgress())
|
| 349 |
+
|
| 350 |
+
# This should work with the enhanced data loading
|
| 351 |
+
X, y = training_manager._load_and_preprocess_data(job)
|
| 352 |
+
|
| 353 |
+
# Should load data from multiple formats
|
| 354 |
+
assert X is not None
|
| 355 |
+
assert y is not None
|
| 356 |
+
assert len(X) >= 10 # Should have at least 10 samples total
|
| 357 |
+
|
| 358 |
+
# Test that we have both classes
|
| 359 |
+
unique_classes = np.unique(y)
|
| 360 |
+
assert len(unique_classes) >= 2
|
| 361 |
+
|
| 362 |
+
finally:
|
| 363 |
+
training_manager.shutdown()
|
| 364 |
+
shutil.rmtree(temp_dir)
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
if __name__ == "__main__":
|
| 368 |
+
pytest.main([__file__])
|