Spaces:
Sleeping
(FEAT) Adds comprehensive 'ResultsManager' class for session-wide results management for multi-file inference.
Browse files- Implemented 'ResultsManager' class to handle inference results in Streamlit session state
- Added methods to initialize, add, retrieve, and clear results (`init_results_table`, `add_resu
lts`, `get_results`, `clear_results')
- Introduced functionality to convert results into a pandas 'DataFrame' for display and export (`get_results_dataframe`)
- Added export capabilities for results in CSV and JSON formats (`export_to_csv`, `export_to_json`)
- Implemented summary statistics calculation, including: accuracy, average confidence, and processing time (`get_summary_stats`)
- Provided a method to remove results by filename ('remove_results_by_filename')
- Integrated a Streamlit UI for displaying results, summary metrics, and export/download options (`display_results_table`)
- Ensured robust handling of empty results and edge cases for better user experience"
- utils/results_manager.py +213 -0
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Session results management for multi-file inference.
|
| 2 |
+
Handles in-memory results table and export functionality"""
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import json
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from typing import Dict, List, Any, Optional
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import io
|
| 11 |
+
|
| 12 |
+
class ResultsManager:
|
| 13 |
+
"""Manages session-wide results for multi-file inference"""
|
| 14 |
+
|
| 15 |
+
RESULTS_KEY = "inference_results"
|
| 16 |
+
|
| 17 |
+
@staticmethod
|
| 18 |
+
def init_results_table() -> None:
|
| 19 |
+
"""Initialize the results table in session state"""
|
| 20 |
+
if ResultsManager.RESULTS_KEY not in st.session_state:
|
| 21 |
+
st.session_state[ResultsManager.RESULTS_KEY] = []
|
| 22 |
+
|
| 23 |
+
@staticmethod
|
| 24 |
+
def add_results(
|
| 25 |
+
filename: str,
|
| 26 |
+
model_name: str,
|
| 27 |
+
prediction: int,
|
| 28 |
+
predicted_class: str,
|
| 29 |
+
confidence: float,
|
| 30 |
+
logits: List[float],
|
| 31 |
+
ground_truth: Optional[int] = None,
|
| 32 |
+
processing_time: float = 0.0,
|
| 33 |
+
metadata: Optional[Dict[str, Any]] = None
|
| 34 |
+
) -> None:
|
| 35 |
+
"""Add a single inference result to the results table"""
|
| 36 |
+
ResultsManager.init_results_table()
|
| 37 |
+
|
| 38 |
+
result = {
|
| 39 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 40 |
+
"filename": filename,
|
| 41 |
+
"model": model_name,
|
| 42 |
+
"prediction": prediction,
|
| 43 |
+
"predicted_class": predicted_class,
|
| 44 |
+
"confidence": confidence,
|
| 45 |
+
"logits": logits,
|
| 46 |
+
"ground_truth": ground_truth,
|
| 47 |
+
"processing_time": processing_time,
|
| 48 |
+
"metadata": metadata or {}
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
st.session_state[ResultsManager.RESULTS_KEY].append(result)
|
| 52 |
+
|
| 53 |
+
@staticmethod
|
| 54 |
+
def get_results() -> List[Dict[str, Any]]:
|
| 55 |
+
"""Get all inference results"""
|
| 56 |
+
ResultsManager.init_results_table()
|
| 57 |
+
return st.session_state[ResultsManager.RESULTS_KEY]
|
| 58 |
+
|
| 59 |
+
@staticmethod
|
| 60 |
+
def get_results_count() -> int:
|
| 61 |
+
"""Get the number of stored results"""
|
| 62 |
+
return len(ResultsManager.get_results())
|
| 63 |
+
|
| 64 |
+
@staticmethod
|
| 65 |
+
def clear_results() -> None:
|
| 66 |
+
"""Clear all stored results"""
|
| 67 |
+
st.session_state[ResultsManager.RESULTS_KEY] = []
|
| 68 |
+
|
| 69 |
+
@staticmethod
|
| 70 |
+
def get_results_dataframe() -> pd.DataFrame:
|
| 71 |
+
"""Convert results to pandas DataFrame for display and export"""
|
| 72 |
+
results = ResultsManager.get_results()
|
| 73 |
+
if not results:
|
| 74 |
+
return pd.DataFrame()
|
| 75 |
+
|
| 76 |
+
#===Flatten the results for DataFrame===
|
| 77 |
+
df_data = []
|
| 78 |
+
for result in results:
|
| 79 |
+
row = {
|
| 80 |
+
"Timestamp": result["timestamp"],
|
| 81 |
+
"Filename": result["filename"],
|
| 82 |
+
"Model": result["model"],
|
| 83 |
+
"Prediction": result["prediction"],
|
| 84 |
+
"Predicted Class": result["predicted_class"],
|
| 85 |
+
"Confidence": f"{result['confidence']:.3f}",
|
| 86 |
+
"Stable Logit": f"{result['logits'][0]:.3f}" if len(result['logits']) > 0 else "N/A",
|
| 87 |
+
"Weathered Logit": f"{result['logits'][1]:.3f}" if len(result['logits']) > 1 else "N/A",
|
| 88 |
+
"Ground Truth": result["ground_truth"] if result["ground_truth"] is not None else "Unknown",
|
| 89 |
+
"Processing Time (s)": f"{result['processing_time']:.3f}",
|
| 90 |
+
}
|
| 91 |
+
df_data.append(row)
|
| 92 |
+
|
| 93 |
+
return pd.DataFrame(df_data)
|
| 94 |
+
|
| 95 |
+
@staticmethod
|
| 96 |
+
def export_to_csv() -> bytes:
|
| 97 |
+
"""Export results to CSV format"""
|
| 98 |
+
df = ResultsManager.get_results_dataframe()
|
| 99 |
+
if df.empty:
|
| 100 |
+
return b""
|
| 101 |
+
|
| 102 |
+
#===Use StringIO to create CSV in memory===
|
| 103 |
+
csv_buffer = io.StringIO()
|
| 104 |
+
df.to_csv(csv_buffer, index=False)
|
| 105 |
+
return csv_buffer.getvalue().encode('utf-8')
|
| 106 |
+
|
| 107 |
+
@staticmethod
|
| 108 |
+
def export_to_json() -> str:
|
| 109 |
+
"""Export results to JSON format"""
|
| 110 |
+
results = ResultsManager.get_results()
|
| 111 |
+
return json.dumps(results, indent=2, default=str)
|
| 112 |
+
|
| 113 |
+
@staticmethod
|
| 114 |
+
def get_summary_stats() -> Dict[str, Any]:
|
| 115 |
+
"""Get summary statistics for the results"""
|
| 116 |
+
results = ResultsManager.get_results()
|
| 117 |
+
if not results:
|
| 118 |
+
return {}
|
| 119 |
+
|
| 120 |
+
df = ResultsManager.get_results_dataframe()
|
| 121 |
+
|
| 122 |
+
stats = {
|
| 123 |
+
"total_files": len(results),
|
| 124 |
+
"models_used": list(set(r["model"] for r in results)),
|
| 125 |
+
"stable_predictions": sum(1 for r in results if r["prediction"] == 0),
|
| 126 |
+
"weathered_predictions": sum(1 for r in results if r["prediction"] == 1),
|
| 127 |
+
"avg_confidence": sum(r["confidence"] for r in results) / len(results),
|
| 128 |
+
"avg_processing_time": sum(r["processing_time"] for r in results) / len(results),
|
| 129 |
+
"files_with_ground_truth": sum(1 for r in results if r["ground_truth"] is not None),
|
| 130 |
+
}
|
| 131 |
+
#===Calculate accuracy if ground truth is available===
|
| 132 |
+
correct_predictions = sum(
|
| 133 |
+
1 for r in results
|
| 134 |
+
if r["ground_truth"] is not None and r["prediction"] == r["ground_truth"]
|
| 135 |
+
)
|
| 136 |
+
total_with_gt = stats["files_with_ground_truth"]
|
| 137 |
+
if total_with_gt > 0:
|
| 138 |
+
stats["accuracy"] = correct_predictions / total_with_gt
|
| 139 |
+
else:
|
| 140 |
+
stats["accuracy"] = None
|
| 141 |
+
|
| 142 |
+
return stats
|
| 143 |
+
|
| 144 |
+
@staticmethod
|
| 145 |
+
def remove_result_by_filename(filename: str) -> bool:
|
| 146 |
+
"""Remove a result by filename. Returns True if removed, False if not found."""
|
| 147 |
+
results = ResultsManager.get_results()
|
| 148 |
+
original_length = len(results)
|
| 149 |
+
|
| 150 |
+
# Filter out results with matching filename
|
| 151 |
+
st.session_state[ResultsManager.RESULTS_KEY] = [
|
| 152 |
+
r for r in results if r["filename"] != filename
|
| 153 |
+
]
|
| 154 |
+
|
| 155 |
+
return len(st.session_state[ResultsManager.RESULTS_KEY]) < original_length
|
| 156 |
+
|
| 157 |
+
@staticmethod
|
| 158 |
+
def display_results_table() -> None:
|
| 159 |
+
"""Display the results table in Streamlit UI"""
|
| 160 |
+
df = ResultsManager.get_results_dataframe()
|
| 161 |
+
|
| 162 |
+
if df.empty:
|
| 163 |
+
st.info("No inference results yet. Upload files and run analysis to see results here.")
|
| 164 |
+
return
|
| 165 |
+
|
| 166 |
+
st.subheader(f"Inference Results ({len(df)} files)")
|
| 167 |
+
|
| 168 |
+
#==Summary stats==
|
| 169 |
+
stats = ResultsManager.get_summary_stats()
|
| 170 |
+
if stats:
|
| 171 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 172 |
+
with col1:
|
| 173 |
+
st.metric("Total Files", stats["total_files"])
|
| 174 |
+
with col2:
|
| 175 |
+
st.metric("Avg Confidence", f"{stats['avg_confidence']:.3f}")
|
| 176 |
+
with col3:
|
| 177 |
+
st.metric("Stable/Weathered", f"{stats['stable_predictions']}/{stats['weathered_predictions']}")
|
| 178 |
+
with col4:
|
| 179 |
+
if stats["accuracy"] is not None:
|
| 180 |
+
st.metric("Accuracy", f"{stats['accuracy']:.3f}")
|
| 181 |
+
else:
|
| 182 |
+
st.metric("Accuracy", "N/A")
|
| 183 |
+
|
| 184 |
+
#==Results Table==
|
| 185 |
+
st.dataframe(df, use_container_width=True)
|
| 186 |
+
|
| 187 |
+
#==Export Button==
|
| 188 |
+
col1, col2, col3 = st.columns([1, 1, 2])
|
| 189 |
+
|
| 190 |
+
with col1:
|
| 191 |
+
csv_data = ResultsManager.export_to_csv()
|
| 192 |
+
if csv_data:
|
| 193 |
+
st.download_button(
|
| 194 |
+
label="Download CSV",
|
| 195 |
+
data=csv_data,
|
| 196 |
+
file_name=f"polymer_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 197 |
+
mime="text/csv"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
with col2:
|
| 201 |
+
json_data = ResultsManager.export_to_json()
|
| 202 |
+
if json_data:
|
| 203 |
+
st.download_button(
|
| 204 |
+
label="📥 Download JSON",
|
| 205 |
+
data=json_data,
|
| 206 |
+
file_name=f"polymer_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
| 207 |
+
mime="application/json"
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
with col3:
|
| 211 |
+
if st.button("Clear All Results", help="Clear all stored results"):
|
| 212 |
+
ResultsManager.clear_results()
|
| 213 |
+
st.rerun()
|