Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
6ea9614
1
Parent(s):
222f7ff
(FEAT)[CLI Tool]: Add multi-model inference, format detection, and flexible output
Browse filesCLI:
- Accepts either a single model ('--arch') or multiple models ('--models') for inference.
- Supports input files in .txt, .csv, or .json, with auto-format detection or forced format.
- Introduces modality selection (Raman/FTIR) for preprocessing.
- Output can be JSON or CSV, with improved naming and path handling.
Internal logic:
- Added 'run_single_model_inference' and 'run_multi_model_inference' to modularize inference workflows.
- Handles weight path patterns for multi-model runs.
- Results include prediction, confidence, processing time, and class probabilities for each model.
- Output saving supports both formats, including tabular CSV for multi-model runs.
- Summary logs and error handling improved for clarity.
- scripts/run_inference.py +364 -61
scripts/run_inference.py
CHANGED
@@ -17,144 +17,447 @@ python scripts/run_inference.py --input ... --arch resnet --weights ... --disabl
|
|
17 |
|
18 |
import os
|
19 |
import sys
|
|
|
20 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
21 |
|
22 |
import argparse
|
23 |
import json
|
|
|
24 |
import logging
|
25 |
from pathlib import Path
|
26 |
-
from typing import cast
|
27 |
from torch import nn
|
|
|
28 |
|
29 |
import numpy as np
|
30 |
import torch
|
31 |
import torch.nn.functional as F
|
32 |
|
33 |
-
from models.registry import build, choices
|
34 |
from utils.preprocessing import preprocess_spectrum, TARGET_LENGTH
|
|
|
35 |
from scripts.plot_spectrum import load_spectrum
|
36 |
from scripts.discover_raman_files import label_file
|
37 |
|
38 |
|
39 |
def parse_args():
|
40 |
-
p = argparse.ArgumentParser(
|
41 |
-
|
42 |
-
|
43 |
-
p.add_argument(
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Default = ON; use disable- flags to turn steps off explicitly.
|
47 |
-
p.add_argument(
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
p.add_argument("--output", default=None, help="Optional output JSON path (defaults to outputs/inference/<name>.json).")
|
52 |
-
p.add_argument("--device", default="cpu", choices=["cpu", "cuda"], help="Compute device (default: cpu).")
|
53 |
return p.parse_args()
|
54 |
|
55 |
|
|
|
|
|
|
|
56 |
def _load_state_dict_safe(path: str):
|
57 |
"""Load a state dict safely across torch versions & checkpoint formats."""
|
58 |
try:
|
59 |
obj = torch.load(path, map_location="cpu", weights_only=True) # newer torch
|
60 |
except TypeError:
|
61 |
obj = torch.load(path, map_location="cpu") # fallback for older torch
|
62 |
-
|
63 |
# Accept either a plain state_dict or a checkpoint dict that contains one
|
64 |
if isinstance(obj, dict):
|
65 |
for k in ("state_dict", "model_state_dict", "model"):
|
66 |
if k in obj and isinstance(obj[k], dict):
|
67 |
obj = obj[k]
|
68 |
break
|
69 |
-
|
70 |
if not isinstance(obj, dict):
|
71 |
raise ValueError(
|
72 |
"Loaded object is not a state_dict or checkpoint with a state_dict. "
|
73 |
f"Type={type(obj)} from file={path}"
|
74 |
)
|
75 |
-
|
76 |
# Strip DataParallel 'module.' prefixes if present
|
77 |
if any(key.startswith("module.") for key in obj.keys()):
|
78 |
obj = {key.replace("module.", "", 1): val for key, val in obj.items()}
|
79 |
-
|
80 |
return obj
|
81 |
|
82 |
|
83 |
-
|
84 |
-
logging.basicConfig(level=logging.INFO, format="INFO: %(message)s")
|
85 |
-
args = parse_args()
|
86 |
|
87 |
-
in_path = Path(args.input)
|
88 |
-
if not in_path.exists():
|
89 |
-
raise FileNotFoundError(f"Input file not found: {in_path}")
|
90 |
|
91 |
-
|
92 |
-
x_raw,
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
#
|
97 |
_, y_proc = preprocess_spectrum(
|
98 |
-
|
99 |
-
|
100 |
target_len=args.target_len,
|
|
|
101 |
do_baseline=not args.disable_baseline,
|
102 |
do_smooth=not args.disable_smooth,
|
103 |
do_normalize=not args.disable_normalize,
|
104 |
out_dtype="float32",
|
105 |
)
|
106 |
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
state = _load_state_dict_safe(args.weights)
|
111 |
missing, unexpected = model.load_state_dict(state, strict=False)
|
112 |
if missing or unexpected:
|
113 |
-
logging.info(
|
|
|
|
|
114 |
|
115 |
model.eval()
|
116 |
|
117 |
-
#
|
118 |
x_tensor = torch.from_numpy(y_proc[None, None, :]).to(device)
|
119 |
|
120 |
with torch.no_grad():
|
121 |
-
logits = model(x_tensor).float().cpu()
|
122 |
probs = F.softmax(logits, dim=1)
|
123 |
|
|
|
124 |
probs_np = probs.numpy().ravel().tolist()
|
125 |
logits_np = logits.numpy().ravel().tolist()
|
126 |
pred_label = int(np.argmax(probs_np))
|
127 |
|
128 |
-
#
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"preprocessing": {
|
142 |
-
"baseline": not args.disable_baseline,
|
143 |
-
"smooth": not args.disable_smooth,
|
144 |
-
"normalize": not args.disable_normalize,
|
145 |
-
},
|
146 |
-
"predicted_label": pred_label,
|
147 |
-
"true_label": true_label,
|
148 |
"probs": probs_np,
|
149 |
"logits": logits_np,
|
|
|
150 |
}
|
151 |
|
152 |
-
with open(out_path, "w", encoding="utf-8") as f:
|
153 |
-
json.dump(result, f, indent=2)
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
|
160 |
if __name__ == "__main__":
|
|
|
17 |
|
18 |
import os
|
19 |
import sys
|
20 |
+
|
21 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
22 |
|
23 |
import argparse
|
24 |
import json
|
25 |
+
import csv
|
26 |
import logging
|
27 |
from pathlib import Path
|
28 |
+
from typing import cast, Dict, List, Any
|
29 |
from torch import nn
|
30 |
+
import time
|
31 |
|
32 |
import numpy as np
|
33 |
import torch
|
34 |
import torch.nn.functional as F
|
35 |
|
36 |
+
from models.registry import build, choices, build_multiple, validate_model_list
|
37 |
from utils.preprocessing import preprocess_spectrum, TARGET_LENGTH
|
38 |
+
from utils.multifile import parse_spectrum_data, detect_file_format
|
39 |
from scripts.plot_spectrum import load_spectrum
|
40 |
from scripts.discover_raman_files import label_file
|
41 |
|
42 |
|
43 |
def parse_args():
|
44 |
+
p = argparse.ArgumentParser(
|
45 |
+
description="Raman/FTIR spectrum inference with multi-model support."
|
46 |
+
)
|
47 |
+
p.add_argument(
|
48 |
+
"--input",
|
49 |
+
required=True,
|
50 |
+
help="Path to spectrum file (.txt, .csv, .json) or directory for batch processing.",
|
51 |
+
)
|
52 |
+
|
53 |
+
# Model selection - either single or multiple
|
54 |
+
group = p.add_mutually_exclusive_group(required=True)
|
55 |
+
group.add_argument(
|
56 |
+
"--arch", choices=choices(), help="Single model architecture key."
|
57 |
+
)
|
58 |
+
group.add_argument(
|
59 |
+
"--models",
|
60 |
+
help="Comma-separated list of models for comparison (e.g., 'figure2,resnet,resnet18vision').",
|
61 |
+
)
|
62 |
+
|
63 |
+
p.add_argument(
|
64 |
+
"--weights",
|
65 |
+
help="Path to model weights (.pth). For multi-model, use pattern with {model} placeholder.",
|
66 |
+
)
|
67 |
+
p.add_argument(
|
68 |
+
"--target-len",
|
69 |
+
type=int,
|
70 |
+
default=TARGET_LENGTH,
|
71 |
+
help="Resample length (default: 500).",
|
72 |
+
)
|
73 |
+
|
74 |
+
# Modality support
|
75 |
+
p.add_argument(
|
76 |
+
"--modality",
|
77 |
+
choices=["raman", "ftir"],
|
78 |
+
default="raman",
|
79 |
+
help="Spectroscopy modality for preprocessing (default: raman).",
|
80 |
+
)
|
81 |
|
82 |
# Default = ON; use disable- flags to turn steps off explicitly.
|
83 |
+
p.add_argument(
|
84 |
+
"--disable-baseline", action="store_true", help="Disable baseline correction."
|
85 |
+
)
|
86 |
+
p.add_argument(
|
87 |
+
"--disable-smooth",
|
88 |
+
action="store_true",
|
89 |
+
help="Disable Savitzky–Golay smoothing.",
|
90 |
+
)
|
91 |
+
p.add_argument(
|
92 |
+
"--disable-normalize",
|
93 |
+
action="store_true",
|
94 |
+
help="Disable min-max normalization.",
|
95 |
+
)
|
96 |
+
|
97 |
+
p.add_argument(
|
98 |
+
"--output",
|
99 |
+
default=None,
|
100 |
+
help="Output path - JSON for single file, CSV for multi-model comparison.",
|
101 |
+
)
|
102 |
+
p.add_argument(
|
103 |
+
"--output-format",
|
104 |
+
choices=["json", "csv"],
|
105 |
+
default="json",
|
106 |
+
help="Output format for results.",
|
107 |
+
)
|
108 |
+
p.add_argument(
|
109 |
+
"--device",
|
110 |
+
default="cpu",
|
111 |
+
choices=["cpu", "cuda"],
|
112 |
+
help="Compute device (default: cpu).",
|
113 |
+
)
|
114 |
+
|
115 |
+
# File format options
|
116 |
+
p.add_argument(
|
117 |
+
"--file-format",
|
118 |
+
choices=["auto", "txt", "csv", "json"],
|
119 |
+
default="auto",
|
120 |
+
help="Input file format (auto-detect by default).",
|
121 |
+
)
|
122 |
|
|
|
|
|
123 |
return p.parse_args()
|
124 |
|
125 |
|
126 |
+
# /////////////////////////////////////////////////////////
|
127 |
+
|
128 |
+
|
129 |
def _load_state_dict_safe(path: str):
|
130 |
"""Load a state dict safely across torch versions & checkpoint formats."""
|
131 |
try:
|
132 |
obj = torch.load(path, map_location="cpu", weights_only=True) # newer torch
|
133 |
except TypeError:
|
134 |
obj = torch.load(path, map_location="cpu") # fallback for older torch
|
|
|
135 |
# Accept either a plain state_dict or a checkpoint dict that contains one
|
136 |
if isinstance(obj, dict):
|
137 |
for k in ("state_dict", "model_state_dict", "model"):
|
138 |
if k in obj and isinstance(obj[k], dict):
|
139 |
obj = obj[k]
|
140 |
break
|
|
|
141 |
if not isinstance(obj, dict):
|
142 |
raise ValueError(
|
143 |
"Loaded object is not a state_dict or checkpoint with a state_dict. "
|
144 |
f"Type={type(obj)} from file={path}"
|
145 |
)
|
|
|
146 |
# Strip DataParallel 'module.' prefixes if present
|
147 |
if any(key.startswith("module.") for key in obj.keys()):
|
148 |
obj = {key.replace("module.", "", 1): val for key, val in obj.items()}
|
|
|
149 |
return obj
|
150 |
|
151 |
|
152 |
+
# /////////////////////////////////////////////////////////
|
|
|
|
|
153 |
|
|
|
|
|
|
|
154 |
|
155 |
+
def run_single_model_inference(
|
156 |
+
x_raw: np.ndarray,
|
157 |
+
y_raw: np.ndarray,
|
158 |
+
model_name: str,
|
159 |
+
weights_path: str,
|
160 |
+
args: argparse.Namespace,
|
161 |
+
device: torch.device,
|
162 |
+
) -> Dict[str, Any]:
|
163 |
+
"""Run inference with a single model."""
|
164 |
+
start_time = time.time()
|
165 |
|
166 |
+
# Preprocess spectrum
|
167 |
_, y_proc = preprocess_spectrum(
|
168 |
+
x_raw,
|
169 |
+
y_raw,
|
170 |
target_len=args.target_len,
|
171 |
+
modality=args.modality,
|
172 |
do_baseline=not args.disable_baseline,
|
173 |
do_smooth=not args.disable_smooth,
|
174 |
do_normalize=not args.disable_normalize,
|
175 |
out_dtype="float32",
|
176 |
)
|
177 |
|
178 |
+
# Build model & load weights
|
179 |
+
model = cast(nn.Module, build(model_name, args.target_len)).to(device)
|
180 |
+
state = _load_state_dict_safe(weights_path)
|
|
|
181 |
missing, unexpected = model.load_state_dict(state, strict=False)
|
182 |
if missing or unexpected:
|
183 |
+
logging.info(
|
184 |
+
f"Model {model_name}: Loaded with non-strict keys. missing={len(missing)} unexpected={len(unexpected)}"
|
185 |
+
)
|
186 |
|
187 |
model.eval()
|
188 |
|
189 |
+
# Run inference
|
190 |
x_tensor = torch.from_numpy(y_proc[None, None, :]).to(device)
|
191 |
|
192 |
with torch.no_grad():
|
193 |
+
logits = model(x_tensor).float().cpu()
|
194 |
probs = F.softmax(logits, dim=1)
|
195 |
|
196 |
+
processing_time = time.time() - start_time
|
197 |
probs_np = probs.numpy().ravel().tolist()
|
198 |
logits_np = logits.numpy().ravel().tolist()
|
199 |
pred_label = int(np.argmax(probs_np))
|
200 |
|
201 |
+
# Map prediction to class name
|
202 |
+
class_names = ["Stable", "Weathered"]
|
203 |
+
predicted_class = (
|
204 |
+
class_names[pred_label]
|
205 |
+
if pred_label < len(class_names)
|
206 |
+
else f"Class_{pred_label}"
|
207 |
+
)
|
208 |
+
|
209 |
+
return {
|
210 |
+
"model": model_name,
|
211 |
+
"prediction": pred_label,
|
212 |
+
"predicted_class": predicted_class,
|
213 |
+
"confidence": max(probs_np),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
"probs": probs_np,
|
215 |
"logits": logits_np,
|
216 |
+
"processing_time": processing_time,
|
217 |
}
|
218 |
|
|
|
|
|
219 |
|
220 |
+
# /////////////////////////////////////////////////////////
|
221 |
+
|
222 |
+
|
223 |
+
def run_multi_model_inference(
|
224 |
+
x_raw: np.ndarray,
|
225 |
+
y_raw: np.ndarray,
|
226 |
+
model_names: List[str],
|
227 |
+
args: argparse.Namespace,
|
228 |
+
device: torch.device,
|
229 |
+
) -> Dict[str, Dict[str, Any]]:
|
230 |
+
"""Run inference with multiple models for comparison."""
|
231 |
+
results = {}
|
232 |
+
|
233 |
+
for model_name in model_names:
|
234 |
+
try:
|
235 |
+
# Generate weights path - either use pattern or assume same weights for all
|
236 |
+
if args.weights and "{model}" in args.weights:
|
237 |
+
weights_path = args.weights.format(model=model_name)
|
238 |
+
elif args.weights:
|
239 |
+
weights_path = args.weights
|
240 |
+
else:
|
241 |
+
# Default weights path pattern
|
242 |
+
weights_path = f"outputs/{model_name}_model.pth"
|
243 |
+
|
244 |
+
if not Path(weights_path).exists():
|
245 |
+
logging.warning(f"Weights not found for {model_name}: {weights_path}")
|
246 |
+
continue
|
247 |
+
|
248 |
+
result = run_single_model_inference(
|
249 |
+
x_raw, y_raw, model_name, weights_path, args, device
|
250 |
+
)
|
251 |
+
results[model_name] = result
|
252 |
+
|
253 |
+
except Exception as e:
|
254 |
+
logging.error(f"Failed to run inference with {model_name}: {str(e)}")
|
255 |
+
continue
|
256 |
+
|
257 |
+
return results
|
258 |
+
|
259 |
+
|
260 |
+
# /////////////////////////////////////////////////////////
|
261 |
+
|
262 |
+
|
263 |
+
def save_results(
|
264 |
+
results: Dict[str, Any], output_path: Path, format: str = "json"
|
265 |
+
) -> None:
|
266 |
+
"""Save results to file in specified format"""
|
267 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
268 |
+
|
269 |
+
if format == "json":
|
270 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
271 |
+
json.dump(results, f, indent=2)
|
272 |
+
elif format == "csv":
|
273 |
+
# Convert to tabular format for CSV
|
274 |
+
if "models" in results: # Multi-model results
|
275 |
+
rows = []
|
276 |
+
for model_name, model_result in results["models"].items():
|
277 |
+
row = {
|
278 |
+
"model": model_name,
|
279 |
+
"prediction": model_result["prediction"],
|
280 |
+
"predicted_class": model_result["predicted_class"],
|
281 |
+
"confidence": model_result["confidence"],
|
282 |
+
"processing_time": model_result["processing_time"],
|
283 |
+
}
|
284 |
+
# Add individual class probabilities
|
285 |
+
if "probs" in model_result:
|
286 |
+
for i, prob in enumerate(model_result["probs"]):
|
287 |
+
row[f"prob_class_{i}"] = prob
|
288 |
+
rows.append(row)
|
289 |
+
|
290 |
+
# Write CSV
|
291 |
+
with open(output_path, "w", newline="", encoding="utf-8") as f:
|
292 |
+
if rows:
|
293 |
+
writer = csv.DictWriter(f, fieldnames=rows[0].keys())
|
294 |
+
writer.writeheader()
|
295 |
+
writer.writerows(rows)
|
296 |
+
else: # Single model result
|
297 |
+
with open(output_path, "w", newline="", encoding="utf-8") as f:
|
298 |
+
writer = csv.DictWriter(f, fieldnames=results.keys())
|
299 |
+
writer.writeheader()
|
300 |
+
writer.writerow(results)
|
301 |
+
|
302 |
+
|
303 |
+
def main():
|
304 |
+
logging.basicConfig(level=logging.INFO, format="INFO: %(message)s")
|
305 |
+
args = parse_args()
|
306 |
+
|
307 |
+
# Input validation
|
308 |
+
in_path = Path(args.input)
|
309 |
+
if not in_path.exists():
|
310 |
+
raise FileNotFoundError(f"Input file not found: {in_path}")
|
311 |
+
|
312 |
+
# Determine if this is single or multi-model inference
|
313 |
+
if args.models:
|
314 |
+
model_names = [m.strip() for m in args.models.split(",")]
|
315 |
+
model_names = validate_model_list(model_names)
|
316 |
+
if not model_names:
|
317 |
+
raise ValueError(f"No valid models found in: {args.models}")
|
318 |
+
multi_model = True
|
319 |
+
else:
|
320 |
+
model_names = [args.arch]
|
321 |
+
multi_model = False
|
322 |
+
|
323 |
+
# Load and parse spectrum data
|
324 |
+
if args.file_format == "auto":
|
325 |
+
file_format = None # Auto-detect
|
326 |
+
else:
|
327 |
+
file_format = args.file_format
|
328 |
+
|
329 |
+
try:
|
330 |
+
# Read file content
|
331 |
+
with open(in_path, "r", encoding="utf-8") as f:
|
332 |
+
content = f.read()
|
333 |
+
|
334 |
+
# Parse spectrum data with format detection
|
335 |
+
x_raw, y_raw = parse_spectrum_data(content, str(in_path))
|
336 |
+
x_raw = np.array(x_raw, dtype=np.float32)
|
337 |
+
y_raw = np.array(y_raw, dtype=np.float32)
|
338 |
+
|
339 |
+
except Exception as e:
|
340 |
+
x_raw, y_raw = load_spectrum(str(in_path))
|
341 |
+
x_raw = np.array(x_raw, dtype=np.float32)
|
342 |
+
y_raw = np.array(y_raw, dtype=np.float32)
|
343 |
+
logging.warning(
|
344 |
+
f"Failed to parse with new parser, falling back to original: {e}"
|
345 |
+
)
|
346 |
+
x_raw, y_raw = load_spectrum(str(in_path))
|
347 |
+
|
348 |
+
if len(x_raw) < 10:
|
349 |
+
raise ValueError("Input spectrum has too few points (<10).")
|
350 |
+
|
351 |
+
# Setup device
|
352 |
+
device = torch.device(
|
353 |
+
args.device if (args.device == "cuda" and torch.cuda.is_available()) else "cpu"
|
354 |
+
)
|
355 |
+
|
356 |
+
# Run inference
|
357 |
+
model_results = {} # Initialize to avoid unbound variable error
|
358 |
+
if multi_model:
|
359 |
+
model_results = run_multi_model_inference(
|
360 |
+
np.array(x_raw, dtype=np.float32),
|
361 |
+
np.array(y_raw, dtype=np.float32),
|
362 |
+
model_names,
|
363 |
+
args,
|
364 |
+
device,
|
365 |
+
)
|
366 |
+
|
367 |
+
# Get ground truth if available
|
368 |
+
true_label = label_file(str(in_path))
|
369 |
+
|
370 |
+
# Prepare combined results
|
371 |
+
results = {
|
372 |
+
"input_file": str(in_path),
|
373 |
+
"modality": args.modality,
|
374 |
+
"models": model_results,
|
375 |
+
"true_label": true_label,
|
376 |
+
"preprocessing": {
|
377 |
+
"baseline": not args.disable_baseline,
|
378 |
+
"smooth": not args.disable_smooth,
|
379 |
+
"normalize": not args.disable_normalize,
|
380 |
+
"target_len": args.target_len,
|
381 |
+
},
|
382 |
+
"comparison": {
|
383 |
+
"total_models": len(model_results),
|
384 |
+
"agreements": (
|
385 |
+
sum(
|
386 |
+
1
|
387 |
+
for i, (_, r1) in enumerate(model_results.items())
|
388 |
+
for j, (_, r2) in enumerate(
|
389 |
+
list(model_results.items())[i + 1 :]
|
390 |
+
)
|
391 |
+
if r1["prediction"] == r2["prediction"]
|
392 |
+
)
|
393 |
+
if len(model_results) > 1
|
394 |
+
else 0
|
395 |
+
),
|
396 |
+
},
|
397 |
+
}
|
398 |
+
|
399 |
+
# Default output path for multi-model
|
400 |
+
default_output = (
|
401 |
+
Path("outputs")
|
402 |
+
/ "inference"
|
403 |
+
/ f"{in_path.stem}_comparison.{args.output_format}"
|
404 |
+
)
|
405 |
+
|
406 |
+
else:
|
407 |
+
# Single model inference
|
408 |
+
model_result = run_single_model_inference(
|
409 |
+
x_raw, y_raw, model_names[0], args.weights, args, device
|
410 |
+
)
|
411 |
+
true_label = label_file(str(in_path))
|
412 |
+
|
413 |
+
results = {
|
414 |
+
"input_file": str(in_path),
|
415 |
+
"modality": args.modality,
|
416 |
+
"arch": model_names[0],
|
417 |
+
"weights": str(args.weights),
|
418 |
+
"target_len": args.target_len,
|
419 |
+
"preprocessing": {
|
420 |
+
"baseline": not args.disable_baseline,
|
421 |
+
"smooth": not args.disable_smooth,
|
422 |
+
"normalize": not args.disable_normalize,
|
423 |
+
},
|
424 |
+
"predicted_label": model_result["prediction"],
|
425 |
+
"predicted_class": model_result["predicted_class"],
|
426 |
+
"true_label": true_label,
|
427 |
+
"confidence": model_result["confidence"],
|
428 |
+
"probs": model_result["probs"],
|
429 |
+
"logits": model_result["logits"],
|
430 |
+
"processing_time": model_result["processing_time"],
|
431 |
+
}
|
432 |
+
|
433 |
+
# Default output path for single model
|
434 |
+
default_output = (
|
435 |
+
Path("outputs")
|
436 |
+
/ "inference"
|
437 |
+
/ f"{in_path.stem}_{model_names[0]}.{args.output_format}"
|
438 |
+
)
|
439 |
+
|
440 |
+
# Save results
|
441 |
+
output_path = Path(args.output) if args.output else default_output
|
442 |
+
save_results(results, output_path, args.output_format)
|
443 |
+
|
444 |
+
# Log summary
|
445 |
+
if multi_model:
|
446 |
+
logging.info(
|
447 |
+
f"Multi-model inference completed with {len(model_results)} models"
|
448 |
+
)
|
449 |
+
for model_name, result in model_results.items():
|
450 |
+
logging.info(
|
451 |
+
f"{model_name}: {result['predicted_class']} (confidence: {result['confidence']:.3f})"
|
452 |
+
)
|
453 |
+
logging.info(f"Results saved to {output_path}")
|
454 |
+
else:
|
455 |
+
logging.info(
|
456 |
+
f"Predicted Label: {results['predicted_label']} ({results['predicted_class']})"
|
457 |
+
)
|
458 |
+
logging.info(f"Confidence: {results['confidence']:.3f}")
|
459 |
+
logging.info(f"True Label: {results['true_label']}")
|
460 |
+
logging.info(f"Result saved to {output_path}")
|
461 |
|
462 |
|
463 |
if __name__ == "__main__":
|