Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
6ea9614
1
Parent(s):
222f7ff
(FEAT)[CLI Tool]: Add multi-model inference, format detection, and flexible output
Browse filesCLI:
- Accepts either a single model ('--arch') or multiple models ('--models') for inference.
- Supports input files in .txt, .csv, or .json, with auto-format detection or forced format.
- Introduces modality selection (Raman/FTIR) for preprocessing.
- Output can be JSON or CSV, with improved naming and path handling.
Internal logic:
- Added 'run_single_model_inference' and 'run_multi_model_inference' to modularize inference workflows.
- Handles weight path patterns for multi-model runs.
- Results include prediction, confidence, processing time, and class probabilities for each model.
- Output saving supports both formats, including tabular CSV for multi-model runs.
- Summary logs and error handling improved for clarity.
- scripts/run_inference.py +364 -61
scripts/run_inference.py
CHANGED
|
@@ -17,144 +17,447 @@ python scripts/run_inference.py --input ... --arch resnet --weights ... --disabl
|
|
| 17 |
|
| 18 |
import os
|
| 19 |
import sys
|
|
|
|
| 20 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
| 21 |
|
| 22 |
import argparse
|
| 23 |
import json
|
|
|
|
| 24 |
import logging
|
| 25 |
from pathlib import Path
|
| 26 |
-
from typing import cast
|
| 27 |
from torch import nn
|
|
|
|
| 28 |
|
| 29 |
import numpy as np
|
| 30 |
import torch
|
| 31 |
import torch.nn.functional as F
|
| 32 |
|
| 33 |
-
from models.registry import build, choices
|
| 34 |
from utils.preprocessing import preprocess_spectrum, TARGET_LENGTH
|
|
|
|
| 35 |
from scripts.plot_spectrum import load_spectrum
|
| 36 |
from scripts.discover_raman_files import label_file
|
| 37 |
|
| 38 |
|
| 39 |
def parse_args():
|
| 40 |
-
p = argparse.ArgumentParser(
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
p.add_argument(
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Default = ON; use disable- flags to turn steps off explicitly.
|
| 47 |
-
p.add_argument(
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
p.add_argument("--output", default=None, help="Optional output JSON path (defaults to outputs/inference/<name>.json).")
|
| 52 |
-
p.add_argument("--device", default="cpu", choices=["cpu", "cuda"], help="Compute device (default: cpu).")
|
| 53 |
return p.parse_args()
|
| 54 |
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
def _load_state_dict_safe(path: str):
|
| 57 |
"""Load a state dict safely across torch versions & checkpoint formats."""
|
| 58 |
try:
|
| 59 |
obj = torch.load(path, map_location="cpu", weights_only=True) # newer torch
|
| 60 |
except TypeError:
|
| 61 |
obj = torch.load(path, map_location="cpu") # fallback for older torch
|
| 62 |
-
|
| 63 |
# Accept either a plain state_dict or a checkpoint dict that contains one
|
| 64 |
if isinstance(obj, dict):
|
| 65 |
for k in ("state_dict", "model_state_dict", "model"):
|
| 66 |
if k in obj and isinstance(obj[k], dict):
|
| 67 |
obj = obj[k]
|
| 68 |
break
|
| 69 |
-
|
| 70 |
if not isinstance(obj, dict):
|
| 71 |
raise ValueError(
|
| 72 |
"Loaded object is not a state_dict or checkpoint with a state_dict. "
|
| 73 |
f"Type={type(obj)} from file={path}"
|
| 74 |
)
|
| 75 |
-
|
| 76 |
# Strip DataParallel 'module.' prefixes if present
|
| 77 |
if any(key.startswith("module.") for key in obj.keys()):
|
| 78 |
obj = {key.replace("module.", "", 1): val for key, val in obj.items()}
|
| 79 |
-
|
| 80 |
return obj
|
| 81 |
|
| 82 |
|
| 83 |
-
|
| 84 |
-
logging.basicConfig(level=logging.INFO, format="INFO: %(message)s")
|
| 85 |
-
args = parse_args()
|
| 86 |
|
| 87 |
-
in_path = Path(args.input)
|
| 88 |
-
if not in_path.exists():
|
| 89 |
-
raise FileNotFoundError(f"Input file not found: {in_path}")
|
| 90 |
|
| 91 |
-
|
| 92 |
-
x_raw,
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
#
|
| 97 |
_, y_proc = preprocess_spectrum(
|
| 98 |
-
|
| 99 |
-
|
| 100 |
target_len=args.target_len,
|
|
|
|
| 101 |
do_baseline=not args.disable_baseline,
|
| 102 |
do_smooth=not args.disable_smooth,
|
| 103 |
do_normalize=not args.disable_normalize,
|
| 104 |
out_dtype="float32",
|
| 105 |
)
|
| 106 |
|
| 107 |
-
#
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
state = _load_state_dict_safe(args.weights)
|
| 111 |
missing, unexpected = model.load_state_dict(state, strict=False)
|
| 112 |
if missing or unexpected:
|
| 113 |
-
logging.info(
|
|
|
|
|
|
|
| 114 |
|
| 115 |
model.eval()
|
| 116 |
|
| 117 |
-
#
|
| 118 |
x_tensor = torch.from_numpy(y_proc[None, None, :]).to(device)
|
| 119 |
|
| 120 |
with torch.no_grad():
|
| 121 |
-
logits = model(x_tensor).float().cpu()
|
| 122 |
probs = F.softmax(logits, dim=1)
|
| 123 |
|
|
|
|
| 124 |
probs_np = probs.numpy().ravel().tolist()
|
| 125 |
logits_np = logits.numpy().ravel().tolist()
|
| 126 |
pred_label = int(np.argmax(probs_np))
|
| 127 |
|
| 128 |
-
#
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
"
|
| 138 |
-
"
|
| 139 |
-
"
|
| 140 |
-
"
|
| 141 |
-
"preprocessing": {
|
| 142 |
-
"baseline": not args.disable_baseline,
|
| 143 |
-
"smooth": not args.disable_smooth,
|
| 144 |
-
"normalize": not args.disable_normalize,
|
| 145 |
-
},
|
| 146 |
-
"predicted_label": pred_label,
|
| 147 |
-
"true_label": true_label,
|
| 148 |
"probs": probs_np,
|
| 149 |
"logits": logits_np,
|
|
|
|
| 150 |
}
|
| 151 |
|
| 152 |
-
with open(out_path, "w", encoding="utf-8") as f:
|
| 153 |
-
json.dump(result, f, indent=2)
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
|
| 160 |
if __name__ == "__main__":
|
|
|
|
| 17 |
|
| 18 |
import os
|
| 19 |
import sys
|
| 20 |
+
|
| 21 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
| 22 |
|
| 23 |
import argparse
|
| 24 |
import json
|
| 25 |
+
import csv
|
| 26 |
import logging
|
| 27 |
from pathlib import Path
|
| 28 |
+
from typing import cast, Dict, List, Any
|
| 29 |
from torch import nn
|
| 30 |
+
import time
|
| 31 |
|
| 32 |
import numpy as np
|
| 33 |
import torch
|
| 34 |
import torch.nn.functional as F
|
| 35 |
|
| 36 |
+
from models.registry import build, choices, build_multiple, validate_model_list
|
| 37 |
from utils.preprocessing import preprocess_spectrum, TARGET_LENGTH
|
| 38 |
+
from utils.multifile import parse_spectrum_data, detect_file_format
|
| 39 |
from scripts.plot_spectrum import load_spectrum
|
| 40 |
from scripts.discover_raman_files import label_file
|
| 41 |
|
| 42 |
|
| 43 |
def parse_args():
|
| 44 |
+
p = argparse.ArgumentParser(
|
| 45 |
+
description="Raman/FTIR spectrum inference with multi-model support."
|
| 46 |
+
)
|
| 47 |
+
p.add_argument(
|
| 48 |
+
"--input",
|
| 49 |
+
required=True,
|
| 50 |
+
help="Path to spectrum file (.txt, .csv, .json) or directory for batch processing.",
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Model selection - either single or multiple
|
| 54 |
+
group = p.add_mutually_exclusive_group(required=True)
|
| 55 |
+
group.add_argument(
|
| 56 |
+
"--arch", choices=choices(), help="Single model architecture key."
|
| 57 |
+
)
|
| 58 |
+
group.add_argument(
|
| 59 |
+
"--models",
|
| 60 |
+
help="Comma-separated list of models for comparison (e.g., 'figure2,resnet,resnet18vision').",
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
p.add_argument(
|
| 64 |
+
"--weights",
|
| 65 |
+
help="Path to model weights (.pth). For multi-model, use pattern with {model} placeholder.",
|
| 66 |
+
)
|
| 67 |
+
p.add_argument(
|
| 68 |
+
"--target-len",
|
| 69 |
+
type=int,
|
| 70 |
+
default=TARGET_LENGTH,
|
| 71 |
+
help="Resample length (default: 500).",
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Modality support
|
| 75 |
+
p.add_argument(
|
| 76 |
+
"--modality",
|
| 77 |
+
choices=["raman", "ftir"],
|
| 78 |
+
default="raman",
|
| 79 |
+
help="Spectroscopy modality for preprocessing (default: raman).",
|
| 80 |
+
)
|
| 81 |
|
| 82 |
# Default = ON; use disable- flags to turn steps off explicitly.
|
| 83 |
+
p.add_argument(
|
| 84 |
+
"--disable-baseline", action="store_true", help="Disable baseline correction."
|
| 85 |
+
)
|
| 86 |
+
p.add_argument(
|
| 87 |
+
"--disable-smooth",
|
| 88 |
+
action="store_true",
|
| 89 |
+
help="Disable Savitzky–Golay smoothing.",
|
| 90 |
+
)
|
| 91 |
+
p.add_argument(
|
| 92 |
+
"--disable-normalize",
|
| 93 |
+
action="store_true",
|
| 94 |
+
help="Disable min-max normalization.",
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
p.add_argument(
|
| 98 |
+
"--output",
|
| 99 |
+
default=None,
|
| 100 |
+
help="Output path - JSON for single file, CSV for multi-model comparison.",
|
| 101 |
+
)
|
| 102 |
+
p.add_argument(
|
| 103 |
+
"--output-format",
|
| 104 |
+
choices=["json", "csv"],
|
| 105 |
+
default="json",
|
| 106 |
+
help="Output format for results.",
|
| 107 |
+
)
|
| 108 |
+
p.add_argument(
|
| 109 |
+
"--device",
|
| 110 |
+
default="cpu",
|
| 111 |
+
choices=["cpu", "cuda"],
|
| 112 |
+
help="Compute device (default: cpu).",
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# File format options
|
| 116 |
+
p.add_argument(
|
| 117 |
+
"--file-format",
|
| 118 |
+
choices=["auto", "txt", "csv", "json"],
|
| 119 |
+
default="auto",
|
| 120 |
+
help="Input file format (auto-detect by default).",
|
| 121 |
+
)
|
| 122 |
|
|
|
|
|
|
|
| 123 |
return p.parse_args()
|
| 124 |
|
| 125 |
|
| 126 |
+
# /////////////////////////////////////////////////////////
|
| 127 |
+
|
| 128 |
+
|
| 129 |
def _load_state_dict_safe(path: str):
|
| 130 |
"""Load a state dict safely across torch versions & checkpoint formats."""
|
| 131 |
try:
|
| 132 |
obj = torch.load(path, map_location="cpu", weights_only=True) # newer torch
|
| 133 |
except TypeError:
|
| 134 |
obj = torch.load(path, map_location="cpu") # fallback for older torch
|
|
|
|
| 135 |
# Accept either a plain state_dict or a checkpoint dict that contains one
|
| 136 |
if isinstance(obj, dict):
|
| 137 |
for k in ("state_dict", "model_state_dict", "model"):
|
| 138 |
if k in obj and isinstance(obj[k], dict):
|
| 139 |
obj = obj[k]
|
| 140 |
break
|
|
|
|
| 141 |
if not isinstance(obj, dict):
|
| 142 |
raise ValueError(
|
| 143 |
"Loaded object is not a state_dict or checkpoint with a state_dict. "
|
| 144 |
f"Type={type(obj)} from file={path}"
|
| 145 |
)
|
|
|
|
| 146 |
# Strip DataParallel 'module.' prefixes if present
|
| 147 |
if any(key.startswith("module.") for key in obj.keys()):
|
| 148 |
obj = {key.replace("module.", "", 1): val for key, val in obj.items()}
|
|
|
|
| 149 |
return obj
|
| 150 |
|
| 151 |
|
| 152 |
+
# /////////////////////////////////////////////////////////
|
|
|
|
|
|
|
| 153 |
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
def run_single_model_inference(
|
| 156 |
+
x_raw: np.ndarray,
|
| 157 |
+
y_raw: np.ndarray,
|
| 158 |
+
model_name: str,
|
| 159 |
+
weights_path: str,
|
| 160 |
+
args: argparse.Namespace,
|
| 161 |
+
device: torch.device,
|
| 162 |
+
) -> Dict[str, Any]:
|
| 163 |
+
"""Run inference with a single model."""
|
| 164 |
+
start_time = time.time()
|
| 165 |
|
| 166 |
+
# Preprocess spectrum
|
| 167 |
_, y_proc = preprocess_spectrum(
|
| 168 |
+
x_raw,
|
| 169 |
+
y_raw,
|
| 170 |
target_len=args.target_len,
|
| 171 |
+
modality=args.modality,
|
| 172 |
do_baseline=not args.disable_baseline,
|
| 173 |
do_smooth=not args.disable_smooth,
|
| 174 |
do_normalize=not args.disable_normalize,
|
| 175 |
out_dtype="float32",
|
| 176 |
)
|
| 177 |
|
| 178 |
+
# Build model & load weights
|
| 179 |
+
model = cast(nn.Module, build(model_name, args.target_len)).to(device)
|
| 180 |
+
state = _load_state_dict_safe(weights_path)
|
|
|
|
| 181 |
missing, unexpected = model.load_state_dict(state, strict=False)
|
| 182 |
if missing or unexpected:
|
| 183 |
+
logging.info(
|
| 184 |
+
f"Model {model_name}: Loaded with non-strict keys. missing={len(missing)} unexpected={len(unexpected)}"
|
| 185 |
+
)
|
| 186 |
|
| 187 |
model.eval()
|
| 188 |
|
| 189 |
+
# Run inference
|
| 190 |
x_tensor = torch.from_numpy(y_proc[None, None, :]).to(device)
|
| 191 |
|
| 192 |
with torch.no_grad():
|
| 193 |
+
logits = model(x_tensor).float().cpu()
|
| 194 |
probs = F.softmax(logits, dim=1)
|
| 195 |
|
| 196 |
+
processing_time = time.time() - start_time
|
| 197 |
probs_np = probs.numpy().ravel().tolist()
|
| 198 |
logits_np = logits.numpy().ravel().tolist()
|
| 199 |
pred_label = int(np.argmax(probs_np))
|
| 200 |
|
| 201 |
+
# Map prediction to class name
|
| 202 |
+
class_names = ["Stable", "Weathered"]
|
| 203 |
+
predicted_class = (
|
| 204 |
+
class_names[pred_label]
|
| 205 |
+
if pred_label < len(class_names)
|
| 206 |
+
else f"Class_{pred_label}"
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
return {
|
| 210 |
+
"model": model_name,
|
| 211 |
+
"prediction": pred_label,
|
| 212 |
+
"predicted_class": predicted_class,
|
| 213 |
+
"confidence": max(probs_np),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
"probs": probs_np,
|
| 215 |
"logits": logits_np,
|
| 216 |
+
"processing_time": processing_time,
|
| 217 |
}
|
| 218 |
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
# /////////////////////////////////////////////////////////
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def run_multi_model_inference(
|
| 224 |
+
x_raw: np.ndarray,
|
| 225 |
+
y_raw: np.ndarray,
|
| 226 |
+
model_names: List[str],
|
| 227 |
+
args: argparse.Namespace,
|
| 228 |
+
device: torch.device,
|
| 229 |
+
) -> Dict[str, Dict[str, Any]]:
|
| 230 |
+
"""Run inference with multiple models for comparison."""
|
| 231 |
+
results = {}
|
| 232 |
+
|
| 233 |
+
for model_name in model_names:
|
| 234 |
+
try:
|
| 235 |
+
# Generate weights path - either use pattern or assume same weights for all
|
| 236 |
+
if args.weights and "{model}" in args.weights:
|
| 237 |
+
weights_path = args.weights.format(model=model_name)
|
| 238 |
+
elif args.weights:
|
| 239 |
+
weights_path = args.weights
|
| 240 |
+
else:
|
| 241 |
+
# Default weights path pattern
|
| 242 |
+
weights_path = f"outputs/{model_name}_model.pth"
|
| 243 |
+
|
| 244 |
+
if not Path(weights_path).exists():
|
| 245 |
+
logging.warning(f"Weights not found for {model_name}: {weights_path}")
|
| 246 |
+
continue
|
| 247 |
+
|
| 248 |
+
result = run_single_model_inference(
|
| 249 |
+
x_raw, y_raw, model_name, weights_path, args, device
|
| 250 |
+
)
|
| 251 |
+
results[model_name] = result
|
| 252 |
+
|
| 253 |
+
except Exception as e:
|
| 254 |
+
logging.error(f"Failed to run inference with {model_name}: {str(e)}")
|
| 255 |
+
continue
|
| 256 |
+
|
| 257 |
+
return results
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# /////////////////////////////////////////////////////////
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def save_results(
|
| 264 |
+
results: Dict[str, Any], output_path: Path, format: str = "json"
|
| 265 |
+
) -> None:
|
| 266 |
+
"""Save results to file in specified format"""
|
| 267 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 268 |
+
|
| 269 |
+
if format == "json":
|
| 270 |
+
with open(output_path, "w", encoding="utf-8") as f:
|
| 271 |
+
json.dump(results, f, indent=2)
|
| 272 |
+
elif format == "csv":
|
| 273 |
+
# Convert to tabular format for CSV
|
| 274 |
+
if "models" in results: # Multi-model results
|
| 275 |
+
rows = []
|
| 276 |
+
for model_name, model_result in results["models"].items():
|
| 277 |
+
row = {
|
| 278 |
+
"model": model_name,
|
| 279 |
+
"prediction": model_result["prediction"],
|
| 280 |
+
"predicted_class": model_result["predicted_class"],
|
| 281 |
+
"confidence": model_result["confidence"],
|
| 282 |
+
"processing_time": model_result["processing_time"],
|
| 283 |
+
}
|
| 284 |
+
# Add individual class probabilities
|
| 285 |
+
if "probs" in model_result:
|
| 286 |
+
for i, prob in enumerate(model_result["probs"]):
|
| 287 |
+
row[f"prob_class_{i}"] = prob
|
| 288 |
+
rows.append(row)
|
| 289 |
+
|
| 290 |
+
# Write CSV
|
| 291 |
+
with open(output_path, "w", newline="", encoding="utf-8") as f:
|
| 292 |
+
if rows:
|
| 293 |
+
writer = csv.DictWriter(f, fieldnames=rows[0].keys())
|
| 294 |
+
writer.writeheader()
|
| 295 |
+
writer.writerows(rows)
|
| 296 |
+
else: # Single model result
|
| 297 |
+
with open(output_path, "w", newline="", encoding="utf-8") as f:
|
| 298 |
+
writer = csv.DictWriter(f, fieldnames=results.keys())
|
| 299 |
+
writer.writeheader()
|
| 300 |
+
writer.writerow(results)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def main():
|
| 304 |
+
logging.basicConfig(level=logging.INFO, format="INFO: %(message)s")
|
| 305 |
+
args = parse_args()
|
| 306 |
+
|
| 307 |
+
# Input validation
|
| 308 |
+
in_path = Path(args.input)
|
| 309 |
+
if not in_path.exists():
|
| 310 |
+
raise FileNotFoundError(f"Input file not found: {in_path}")
|
| 311 |
+
|
| 312 |
+
# Determine if this is single or multi-model inference
|
| 313 |
+
if args.models:
|
| 314 |
+
model_names = [m.strip() for m in args.models.split(",")]
|
| 315 |
+
model_names = validate_model_list(model_names)
|
| 316 |
+
if not model_names:
|
| 317 |
+
raise ValueError(f"No valid models found in: {args.models}")
|
| 318 |
+
multi_model = True
|
| 319 |
+
else:
|
| 320 |
+
model_names = [args.arch]
|
| 321 |
+
multi_model = False
|
| 322 |
+
|
| 323 |
+
# Load and parse spectrum data
|
| 324 |
+
if args.file_format == "auto":
|
| 325 |
+
file_format = None # Auto-detect
|
| 326 |
+
else:
|
| 327 |
+
file_format = args.file_format
|
| 328 |
+
|
| 329 |
+
try:
|
| 330 |
+
# Read file content
|
| 331 |
+
with open(in_path, "r", encoding="utf-8") as f:
|
| 332 |
+
content = f.read()
|
| 333 |
+
|
| 334 |
+
# Parse spectrum data with format detection
|
| 335 |
+
x_raw, y_raw = parse_spectrum_data(content, str(in_path))
|
| 336 |
+
x_raw = np.array(x_raw, dtype=np.float32)
|
| 337 |
+
y_raw = np.array(y_raw, dtype=np.float32)
|
| 338 |
+
|
| 339 |
+
except Exception as e:
|
| 340 |
+
x_raw, y_raw = load_spectrum(str(in_path))
|
| 341 |
+
x_raw = np.array(x_raw, dtype=np.float32)
|
| 342 |
+
y_raw = np.array(y_raw, dtype=np.float32)
|
| 343 |
+
logging.warning(
|
| 344 |
+
f"Failed to parse with new parser, falling back to original: {e}"
|
| 345 |
+
)
|
| 346 |
+
x_raw, y_raw = load_spectrum(str(in_path))
|
| 347 |
+
|
| 348 |
+
if len(x_raw) < 10:
|
| 349 |
+
raise ValueError("Input spectrum has too few points (<10).")
|
| 350 |
+
|
| 351 |
+
# Setup device
|
| 352 |
+
device = torch.device(
|
| 353 |
+
args.device if (args.device == "cuda" and torch.cuda.is_available()) else "cpu"
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
# Run inference
|
| 357 |
+
model_results = {} # Initialize to avoid unbound variable error
|
| 358 |
+
if multi_model:
|
| 359 |
+
model_results = run_multi_model_inference(
|
| 360 |
+
np.array(x_raw, dtype=np.float32),
|
| 361 |
+
np.array(y_raw, dtype=np.float32),
|
| 362 |
+
model_names,
|
| 363 |
+
args,
|
| 364 |
+
device,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
# Get ground truth if available
|
| 368 |
+
true_label = label_file(str(in_path))
|
| 369 |
+
|
| 370 |
+
# Prepare combined results
|
| 371 |
+
results = {
|
| 372 |
+
"input_file": str(in_path),
|
| 373 |
+
"modality": args.modality,
|
| 374 |
+
"models": model_results,
|
| 375 |
+
"true_label": true_label,
|
| 376 |
+
"preprocessing": {
|
| 377 |
+
"baseline": not args.disable_baseline,
|
| 378 |
+
"smooth": not args.disable_smooth,
|
| 379 |
+
"normalize": not args.disable_normalize,
|
| 380 |
+
"target_len": args.target_len,
|
| 381 |
+
},
|
| 382 |
+
"comparison": {
|
| 383 |
+
"total_models": len(model_results),
|
| 384 |
+
"agreements": (
|
| 385 |
+
sum(
|
| 386 |
+
1
|
| 387 |
+
for i, (_, r1) in enumerate(model_results.items())
|
| 388 |
+
for j, (_, r2) in enumerate(
|
| 389 |
+
list(model_results.items())[i + 1 :]
|
| 390 |
+
)
|
| 391 |
+
if r1["prediction"] == r2["prediction"]
|
| 392 |
+
)
|
| 393 |
+
if len(model_results) > 1
|
| 394 |
+
else 0
|
| 395 |
+
),
|
| 396 |
+
},
|
| 397 |
+
}
|
| 398 |
+
|
| 399 |
+
# Default output path for multi-model
|
| 400 |
+
default_output = (
|
| 401 |
+
Path("outputs")
|
| 402 |
+
/ "inference"
|
| 403 |
+
/ f"{in_path.stem}_comparison.{args.output_format}"
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
else:
|
| 407 |
+
# Single model inference
|
| 408 |
+
model_result = run_single_model_inference(
|
| 409 |
+
x_raw, y_raw, model_names[0], args.weights, args, device
|
| 410 |
+
)
|
| 411 |
+
true_label = label_file(str(in_path))
|
| 412 |
+
|
| 413 |
+
results = {
|
| 414 |
+
"input_file": str(in_path),
|
| 415 |
+
"modality": args.modality,
|
| 416 |
+
"arch": model_names[0],
|
| 417 |
+
"weights": str(args.weights),
|
| 418 |
+
"target_len": args.target_len,
|
| 419 |
+
"preprocessing": {
|
| 420 |
+
"baseline": not args.disable_baseline,
|
| 421 |
+
"smooth": not args.disable_smooth,
|
| 422 |
+
"normalize": not args.disable_normalize,
|
| 423 |
+
},
|
| 424 |
+
"predicted_label": model_result["prediction"],
|
| 425 |
+
"predicted_class": model_result["predicted_class"],
|
| 426 |
+
"true_label": true_label,
|
| 427 |
+
"confidence": model_result["confidence"],
|
| 428 |
+
"probs": model_result["probs"],
|
| 429 |
+
"logits": model_result["logits"],
|
| 430 |
+
"processing_time": model_result["processing_time"],
|
| 431 |
+
}
|
| 432 |
+
|
| 433 |
+
# Default output path for single model
|
| 434 |
+
default_output = (
|
| 435 |
+
Path("outputs")
|
| 436 |
+
/ "inference"
|
| 437 |
+
/ f"{in_path.stem}_{model_names[0]}.{args.output_format}"
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# Save results
|
| 441 |
+
output_path = Path(args.output) if args.output else default_output
|
| 442 |
+
save_results(results, output_path, args.output_format)
|
| 443 |
+
|
| 444 |
+
# Log summary
|
| 445 |
+
if multi_model:
|
| 446 |
+
logging.info(
|
| 447 |
+
f"Multi-model inference completed with {len(model_results)} models"
|
| 448 |
+
)
|
| 449 |
+
for model_name, result in model_results.items():
|
| 450 |
+
logging.info(
|
| 451 |
+
f"{model_name}: {result['predicted_class']} (confidence: {result['confidence']:.3f})"
|
| 452 |
+
)
|
| 453 |
+
logging.info(f"Results saved to {output_path}")
|
| 454 |
+
else:
|
| 455 |
+
logging.info(
|
| 456 |
+
f"Predicted Label: {results['predicted_label']} ({results['predicted_class']})"
|
| 457 |
+
)
|
| 458 |
+
logging.info(f"Confidence: {results['confidence']:.3f}")
|
| 459 |
+
logging.info(f"True Label: {results['true_label']}")
|
| 460 |
+
logging.info(f"Result saved to {output_path}")
|
| 461 |
|
| 462 |
|
| 463 |
if __name__ == "__main__":
|