polymer-aging-ml / utils /performance_tracker.py
devjas1
(FEAT)[Performance Analytics]: Implement performance tracking utility and dashboard
05d496e
"""Performance tracking and logging utilities for POLYMEROS platform."""
import time
import json
import sqlite3
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Any, Optional
import numpy as np
import matplotlib.pyplot as plt
import streamlit as st
from dataclasses import dataclass, asdict
from contextlib import contextmanager
@dataclass
class PerformanceMetrics:
"""Data class for performance metrics."""
model_name: str
prediction_time: float
preprocessing_time: float
total_time: float
memory_usage_mb: float
accuracy: Optional[float]
confidence: float
timestamp: str
input_size: int
modality: str
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
class PerformanceTracker:
"""Automatic performance tracking and logging system."""
def __init__(self, db_path: str = "outputs/performance_tracking.db"):
self.db_path = Path(db_path)
self.db_path.parent.mkdir(parents=True, exist_ok=True)
self._init_database()
def _init_database(self):
"""Initialize SQLite database for performance tracking."""
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
CREATE TABLE IF NOT EXISTS performance_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_name TEXT NOT NULL,
prediction_time REAL NOT NULL,
preprocessing_time REAL NOT NULL,
total_time REAL NOT NULL,
memory_usage_mb REAL,
accuracy REAL,
confidence REAL NOT NULL,
timestamp TEXT NOT NULL,
input_size INTEGER NOT NULL,
modality TEXT NOT NULL
)
"""
)
conn.commit()
def log_performance(self, metrics: PerformanceMetrics):
"""Log performance metrics to database."""
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
INSERT INTO performance_metrics
(model_name, prediction_time, preprocessing_time, total_time,
memory_usage_mb, accuracy, confidence, timestamp, input_size, modality)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
(
metrics.model_name,
metrics.prediction_time,
metrics.preprocessing_time,
metrics.total_time,
metrics.memory_usage_mb,
metrics.accuracy,
metrics.confidence,
metrics.timestamp,
metrics.input_size,
metrics.modality,
),
)
conn.commit()
@contextmanager
def track_inference(self, model_name: str, modality: str = "raman"):
"""Context manager for automatic performance tracking."""
start_time = time.time()
start_memory = self._get_memory_usage()
tracking_data = {
"model_name": model_name,
"modality": modality,
"start_time": start_time,
"start_memory": start_memory,
"preprocessing_time": 0.0,
}
try:
yield tracking_data
finally:
end_time = time.time()
end_memory = self._get_memory_usage()
total_time = end_time - start_time
memory_usage = max(end_memory - start_memory, 0)
# Create metrics object if not provided
if "metrics" not in tracking_data:
metrics = PerformanceMetrics(
model_name=model_name,
prediction_time=tracking_data.get("prediction_time", total_time),
preprocessing_time=tracking_data.get("preprocessing_time", 0.0),
total_time=total_time,
memory_usage_mb=memory_usage,
accuracy=tracking_data.get("accuracy"),
confidence=tracking_data.get("confidence", 0.0),
timestamp=datetime.now().isoformat(),
input_size=tracking_data.get("input_size", 0),
modality=modality,
)
self.log_performance(metrics)
def _get_memory_usage(self) -> float:
"""Get current memory usage in MB."""
try:
import psutil
process = psutil.Process()
return process.memory_info().rss / 1024 / 1024 # Convert to MB
except ImportError:
return 0.0 # psutil not available
def get_recent_metrics(self, limit: int = 100) -> List[Dict[str, Any]]:
"""Get recent performance metrics."""
with sqlite3.connect(self.db_path) as conn:
conn.row_factory = sqlite3.Row # Enable column access by name
cursor = conn.execute(
"""
SELECT * FROM performance_metrics
ORDER BY timestamp DESC
LIMIT ?
""",
(limit,),
)
return [dict(row) for row in cursor.fetchall()]
def get_model_statistics(self, model_name: Optional[str] = None) -> Dict[str, Any]:
"""Get statistical summary of model performance."""
where_clause = "WHERE model_name = ?" if model_name else ""
params = (model_name,) if model_name else ()
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute(
f"""
SELECT
model_name,
COUNT(*) as total_inferences,
AVG(prediction_time) as avg_prediction_time,
AVG(preprocessing_time) as avg_preprocessing_time,
AVG(total_time) as avg_total_time,
AVG(memory_usage_mb) as avg_memory_usage,
AVG(confidence) as avg_confidence,
MIN(total_time) as fastest_inference,
MAX(total_time) as slowest_inference
FROM performance_metrics
{where_clause}
GROUP BY model_name
""",
params,
)
results = cursor.fetchall()
if model_name and results:
# Return single model stats as dict
row = results[0]
return {
"model_name": row[0],
"total_inferences": row[1],
"avg_prediction_time": row[2],
"avg_preprocessing_time": row[3],
"avg_total_time": row[4],
"avg_memory_usage": row[5],
"avg_confidence": row[6],
"fastest_inference": row[7],
"slowest_inference": row[8],
}
elif not model_name:
# Return all models stats as dict of dicts
return {
row[0]: {
"model_name": row[0],
"total_inferences": row[1],
"avg_prediction_time": row[2],
"avg_preprocessing_time": row[3],
"avg_total_time": row[4],
"avg_memory_usage": row[5],
"avg_confidence": row[6],
"fastest_inference": row[7],
"slowest_inference": row[8],
}
for row in results
}
else:
return {}
def create_performance_visualization(self) -> plt.Figure:
"""Create performance visualization charts."""
metrics = self.get_recent_metrics(50)
if not metrics:
return None
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8))
# Convert to convenient format
models = [m["model_name"] for m in metrics]
times = [m["total_time"] for m in metrics]
confidences = [m["confidence"] for m in metrics]
timestamps = [datetime.fromisoformat(m["timestamp"]) for m in metrics]
# 1. Inference Time Over Time
ax1.plot(timestamps, times, "o-", alpha=0.7)
ax1.set_title("Inference Time Over Time")
ax1.set_ylabel("Time (seconds)")
ax1.tick_params(axis="x", rotation=45)
# 2. Performance by Model
model_stats = self.get_model_statistics()
if model_stats:
model_names = list(model_stats.keys())
avg_times = [model_stats[m]["avg_total_time"] for m in model_names]
ax2.bar(model_names, avg_times, alpha=0.7)
ax2.set_title("Average Inference Time by Model")
ax2.set_ylabel("Time (seconds)")
ax2.tick_params(axis="x", rotation=45)
# 3. Confidence Distribution
ax3.hist(confidences, bins=20, alpha=0.7)
ax3.set_title("Confidence Score Distribution")
ax3.set_xlabel("Confidence")
ax3.set_ylabel("Frequency")
# 4. Memory Usage if available
memory_usage = [
m["memory_usage_mb"] for m in metrics if m["memory_usage_mb"] is not None
]
if memory_usage:
ax4.plot(range(len(memory_usage)), memory_usage, "o-", alpha=0.7)
ax4.set_title("Memory Usage")
ax4.set_xlabel("Inference Number")
ax4.set_ylabel("Memory (MB)")
else:
ax4.text(
0.5,
0.5,
"Memory tracking\nnot available",
ha="center",
va="center",
transform=ax4.transAxes,
)
ax4.set_title("Memory Usage")
plt.tight_layout()
return fig
def export_metrics(self, format: str = "json") -> str:
"""Export performance metrics in specified format."""
metrics = self.get_recent_metrics(1000) # Get more for export
if format == "json":
return json.dumps(metrics, indent=2, default=str)
elif format == "csv":
import pandas as pd
df = pd.DataFrame(metrics)
return df.to_csv(index=False)
else:
raise ValueError(f"Unsupported format: {format}")
# Global tracker instance
_tracker = None
def get_performance_tracker() -> PerformanceTracker:
"""Get global performance tracker instance."""
global _tracker
if _tracker is None:
_tracker = PerformanceTracker()
return _tracker
def display_performance_dashboard():
"""Display performance tracking dashboard in Streamlit."""
tracker = get_performance_tracker()
st.markdown("### 📈 Performance Dashboard")
# Recent metrics summary
recent_metrics = tracker.get_recent_metrics(20)
if not recent_metrics:
st.info(
"No performance data available yet. Run some inferences to see metrics."
)
return
# Summary statistics
col1, col2, col3, col4 = st.columns(4)
total_inferences = len(recent_metrics)
avg_time = np.mean([m["total_time"] for m in recent_metrics])
avg_confidence = np.mean([m["confidence"] for m in recent_metrics])
unique_models = len(set(m["model_name"] for m in recent_metrics))
with col1:
st.metric("Total Inferences", total_inferences)
with col2:
st.metric("Avg Time", f"{avg_time:.3f}s")
with col3:
st.metric("Avg Confidence", f"{avg_confidence:.3f}")
with col4:
st.metric("Models Used", unique_models)
# Performance visualization
fig = tracker.create_performance_visualization()
if fig:
st.pyplot(fig)
# Model comparison table
st.markdown("#### Model Performance Comparison")
model_stats = tracker.get_model_statistics()
if model_stats:
import pandas as pd
stats_data = []
for model_name, stats in model_stats.items():
stats_data.append(
{
"Model": model_name,
"Total Inferences": stats["total_inferences"],
"Avg Time (s)": f"{stats['avg_total_time']:.3f}",
"Avg Confidence": f"{stats['avg_confidence']:.3f}",
"Fastest (s)": f"{stats['fastest_inference']:.3f}",
"Slowest (s)": f"{stats['slowest_inference']:.3f}",
}
)
df = pd.DataFrame(stats_data)
st.dataframe(df, use_container_width=True)
# Export options
with st.expander("📥 Export Performance Data"):
col1, col2 = st.columns(2)
with col1:
if st.button("Export JSON"):
json_data = tracker.export_metrics("json")
st.download_button(
"Download JSON",
json_data,
"performance_metrics.json",
"application/json",
)
with col2:
if st.button("Export CSV"):
csv_data = tracker.export_metrics("csv")
st.download_button(
"Download CSV", csv_data, "performance_metrics.csv", "text/csv"
)
if __name__ == "__main__":
# Test the performance tracker
tracker = PerformanceTracker()
# Simulate some metrics
for i in range(5):
metrics = PerformanceMetrics(
model_name=f"test_model_{i%2}",
prediction_time=0.1 + i * 0.01,
preprocessing_time=0.05,
total_time=0.15 + i * 0.01,
memory_usage_mb=100 + i * 10,
accuracy=0.8 + i * 0.02,
confidence=0.7 + i * 0.05,
timestamp=datetime.now().isoformat(),
input_size=500,
modality="raman",
)
tracker.log_performance(metrics)
print("Performance tracking test completed!")
print(f"Recent metrics: {len(tracker.get_recent_metrics())}")
print(f"Model stats: {tracker.get_model_statistics()}")