polymer-aging-ml / tests /test_training_manager.py
devjas1
(TESTS)[Comprehensive Test Suite for Training Manager]: Validate training manager, config, data loading, augmentation, and metrics
6e2806f
"""
Tests for the training manager functionality.
"""
import pytest
import tempfile
import shutil
from pathlib import Path
import numpy as np
import torch
import json
import pandas as pd
from utils.training_manager import (
TrainingManager,
TrainingConfig,
TrainingStatus,
get_training_manager,
CVStrategy,
get_cv_splitter,
calculate_spectroscopy_metrics,
augment_spectral_data,
spectral_cosine_similarity,
)
def create_test_dataset(dataset_path: Path, num_samples: int = 10):
"""Create a test dataset for training"""
# Create directories
(dataset_path / "stable").mkdir(parents=True, exist_ok=True)
(dataset_path / "weathered").mkdir(parents=True, exist_ok=True)
# Generate synthetic spectra
wavenumbers = np.linspace(400, 4000, 200)
for i in range(num_samples // 2):
# Stable samples
intensities = np.random.normal(0.5, 0.1, len(wavenumbers))
data = np.column_stack([wavenumbers, intensities])
np.savetxt(dataset_path / "stable" / f"stable_{i}.txt", data)
# Weathered samples
intensities = np.random.normal(0.3, 0.1, len(wavenumbers))
data = np.column_stack([wavenumbers, intensities])
np.savetxt(dataset_path / "weathered" / f"weathered_{i}.txt", data)
@pytest.fixture
def temp_dataset():
"""Create temporary dataset for testing"""
temp_dir = Path(tempfile.mkdtemp())
dataset_path = temp_dir / "test_dataset"
create_test_dataset(dataset_path)
yield dataset_path
shutil.rmtree(temp_dir)
@pytest.fixture
def training_manager():
"""Create training manager for testing"""
temp_dir = Path(tempfile.mkdtemp())
# Use ThreadPoolExecutor for tests to avoid multiprocessing complexities
manager = TrainingManager(
max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False
)
yield manager
manager.shutdown()
shutil.rmtree(temp_dir)
def test_training_config():
"""Test training configuration creation"""
config = TrainingConfig(
model_name="figure2", dataset_path="/test/path", epochs=5, batch_size=8
)
assert config.model_name == "figure2"
assert config.epochs == 5
assert config.batch_size == 8
assert config.device == "auto"
def test_training_manager_initialization(training_manager):
"""Test training manager initialization"""
assert training_manager.max_workers == 1
assert len(training_manager.jobs) == 0
def test_submit_training_job(training_manager, temp_dataset):
"""Test submitting a training job"""
config = TrainingConfig(
model_name="figure2", dataset_path=str(temp_dataset), epochs=1, batch_size=4
)
job_id = training_manager.submit_training_job(config)
assert job_id is not None
assert len(job_id) > 0
assert job_id in training_manager.jobs
job = training_manager.get_job_status(job_id)
assert job is not None
assert job.config.model_name == "figure2"
def test_training_job_execution(training_manager, temp_dataset):
"""Test actual training job execution (lightweight test)"""
config = TrainingConfig(
model_name="figure2",
dataset_path=str(temp_dataset),
epochs=1,
num_folds=2, # Reduced for testing
batch_size=4,
)
job_id = training_manager.submit_training_job(config)
# Wait a moment for job to start
import time
time.sleep(1)
job = training_manager.get_job_status(job_id)
assert job.status in [
TrainingStatus.PENDING,
TrainingStatus.RUNNING,
TrainingStatus.COMPLETED,
TrainingStatus.FAILED,
]
def test_list_jobs(training_manager, temp_dataset):
"""Test listing jobs with filters"""
config = TrainingConfig(
model_name="figure2", dataset_path=str(temp_dataset), epochs=1
)
job_id = training_manager.submit_training_job(config)
all_jobs = training_manager.list_jobs()
assert len(all_jobs) >= 1
pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING)
running_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
# Job should be in one of these states
assert len(pending_jobs) + len(running_jobs) >= 1
def test_global_training_manager():
"""Test global training manager singleton"""
manager1 = get_training_manager()
manager2 = get_training_manager()
assert manager1 is manager2 # Should be same instance
def test_device_selection(training_manager):
"""Test device selection logic"""
# Test auto device selection
device = training_manager._get_device("auto")
assert device.type in ["cpu", "cuda"]
# Test CPU selection
device = training_manager._get_device("cpu")
assert device.type == "cpu"
# Test CUDA selection (should fallback to CPU if not available)
device = training_manager._get_device("cuda")
if torch.cuda.is_available():
assert device.type == "cuda"
else:
assert device.type == "cpu"
def test_invalid_dataset_path(training_manager):
"""Test handling of invalid dataset path"""
config = TrainingConfig(
model_name="figure2", dataset_path="/nonexistent/path", epochs=1
)
job_id = training_manager.submit_training_job(config)
# Wait for job to process
import time
time.sleep(2)
job = training_manager.get_job_status(job_id)
assert job.status == TrainingStatus.FAILED
assert "dataset" in job.error_message.lower()
def test_configurable_cv_strategies():
"""Test different cross-validation strategies"""
# Test StratifiedKFold
skf = get_cv_splitter("stratified_kfold", n_splits=5)
assert hasattr(skf, "split")
# Test KFold
kf = get_cv_splitter("kfold", n_splits=5)
assert hasattr(kf, "split")
# Test TimeSeriesSplit
tss = get_cv_splitter("time_series_split", n_splits=5)
assert hasattr(tss, "split")
# Test default fallback
default = get_cv_splitter("invalid_strategy", n_splits=5)
assert hasattr(default, "split")
def test_spectroscopy_metrics():
"""Test spectroscopy-specific metrics calculation"""
# Create test data
y_true = np.array([0, 0, 1, 1, 0, 1])
y_pred = np.array([0, 1, 1, 1, 0, 0])
probabilities = np.array(
[[0.8, 0.2], [0.4, 0.6], [0.3, 0.7], [0.2, 0.8], [0.9, 0.1], [0.6, 0.4]]
)
metrics = calculate_spectroscopy_metrics(y_true, y_pred, probabilities)
# Check that all expected metrics are present
assert "accuracy" in metrics
assert "f1_score" in metrics
assert "cosine_similarity" in metrics
assert "distribution_similarity" in metrics
# Check that metrics are reasonable
assert 0 <= metrics["accuracy"] <= 1
assert 0 <= metrics["f1_score"] <= 1
assert -1 <= metrics["cosine_similarity"] <= 1
assert 0 <= metrics["distribution_similarity"] <= 1
def test_spectral_cosine_similarity():
"""Test cosine similarity calculation for spectral data"""
# Create test spectra
spectrum1 = np.array([1, 2, 3, 4, 5])
spectrum2 = np.array([2, 4, 6, 8, 10]) # Perfect correlation
spectrum3 = np.array([5, 4, 3, 2, 1]) # Anti-correlation
# Test perfect correlation
sim1 = spectral_cosine_similarity(spectrum1, spectrum2)
assert abs(sim1 - 1.0) < 1e-10
# Test that similarity exists
sim2 = spectral_cosine_similarity(spectrum1, spectrum3)
assert -1 <= sim2 <= 1 # Valid cosine similarity range
# Test self-similarity
sim3 = spectral_cosine_similarity(spectrum1, spectrum1)
assert abs(sim3 - 1.0) < 1e-10
def test_data_augmentation():
"""Test spectral data augmentation"""
# Create test data
X = np.random.rand(10, 100)
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
# Test augmentation
X_aug, y_aug = augment_spectral_data(X, y, noise_level=0.01, augmentation_factor=3)
# Check that data is augmented
assert X_aug.shape[0] == X.shape[0] * 3
assert y_aug.shape[0] == y.shape[0] * 3
assert X_aug.shape[1] == X.shape[1] # Same number of features
# Test no augmentation
X_no_aug, y_no_aug = augment_spectral_data(X, y, augmentation_factor=1)
assert np.array_equal(X_no_aug, X)
assert np.array_equal(y_no_aug, y)
def test_enhanced_training_config():
"""Test enhanced training configuration with new parameters"""
config = TrainingConfig(
model_name="figure2",
dataset_path="/test/path",
cv_strategy="time_series_split",
enable_augmentation=True,
noise_level=0.02,
spectral_weight=0.2,
)
assert config.cv_strategy == "time_series_split"
assert config.enable_augmentation == True
assert config.noise_level == 0.02
assert config.spectral_weight == 0.2
# Test serialization includes new fields
config_dict = config.to_dict()
assert "cv_strategy" in config_dict
assert "enable_augmentation" in config_dict
assert "noise_level" in config_dict
assert "spectral_weight" in config_dict
def test_enhanced_dataset_loading_security():
"""Test enhanced dataset loading with security features"""
temp_dir = Path(tempfile.mkdtemp())
training_manager = TrainingManager(
max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False
)
try:
# Create a test dataset with different file formats
dataset_dir = temp_dir / "test_dataset"
(dataset_dir / "stable").mkdir(parents=True)
(dataset_dir / "weathered").mkdir(parents=True)
# Create multiple files to meet minimum requirements
for i in range(6): # Create 6 files per class
# Create CSV files
csv_data = pd.DataFrame(
{
"wavenumber": np.linspace(400, 4000, 100),
"intensity": np.random.rand(100),
}
)
csv_data.to_csv(
dataset_dir / "stable" / f"test_stable_{i}.csv", index=False
)
# Create JSON files
json_data = {
"x": np.linspace(400, 4000, 100).tolist(),
"y": np.random.rand(100).tolist(),
}
with open(dataset_dir / "weathered" / f"test_weathered_{i}.json", "w") as f:
json.dump(json_data, f)
# Test configuration with enhanced features
config = TrainingConfig(
model_name="figure2",
dataset_path=str(dataset_dir),
epochs=1,
cv_strategy="kfold",
enable_augmentation=True,
noise_level=0.01,
)
# Test that the enhanced loading works
from utils.training_manager import TrainingJob, TrainingProgress
job = TrainingJob(job_id="test", config=config, progress=TrainingProgress())
# This should work with the enhanced data loading
X, y = training_manager._load_and_preprocess_data(job)
# Should load data from multiple formats
assert X is not None
assert y is not None
assert len(X) >= 10 # Should have at least 10 samples total
# Test that we have both classes
unique_classes = np.unique(y)
assert len(unique_classes) >= 2
finally:
training_manager.shutdown()
shutil.rmtree(temp_dir)
if __name__ == "__main__":
pytest.main([__file__])