polymer-aging-ml / modules /enhanced_data.py
devjas1
Adds enhanced data management system for spectral analysis
b2793c5
"""
Enhanced Data Management System for POLYMEROS
Implements contextual knowledge networks and metadata preservation
"""
import os
import json
import hashlib
from dataclasses import dataclass, asdict
from datetime import datetime
from typing import Dict, List, Optional, Any, Tuple
from pathlib import Path
import numpy as np
from utils.preprocessing import preprocess_spectrum
@dataclass
class SpectralMetadata:
"""Comprehensive metadata for spectral data"""
filename: str
acquisition_date: Optional[str] = None
instrument_type: str = "Raman"
laser_wavelength: Optional[float] = None
integration_time: Optional[float] = None
laser_power: Optional[float] = None
temperature: Optional[float] = None
humidity: Optional[float] = None
sample_preparation: Optional[str] = None
operator: Optional[str] = None
data_quality_score: Optional[float] = None
preprocessing_history: Optional[List[str]] = None
def __post_init__(self):
if self.preprocessing_history is None:
self.preprocessing_history = []
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "SpectralMetadata":
return cls(**data)
@dataclass
class ProvenanceRecord:
"""Complete provenance tracking for scientific reproducibility"""
operation: str
timestamp: str
parameters: Dict[str, Any]
input_hash: str
output_hash: str
operator: str = "system"
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "ProvenanceRecord":
return cls(**data)
class ContextualSpectrum:
"""Enhanced spectral data with context and provenance"""
def __init__(
self,
x_data: np.ndarray,
y_data: np.ndarray,
metadata: SpectralMetadata,
label: Optional[int] = None,
):
self.x_data = x_data
self.y_data = y_data
self.metadata = metadata
self.label = label
self.provenance: List[ProvenanceRecord] = []
self.relationships: Dict[str, List[str]] = {
"similar_spectra": [],
"related_samples": [],
}
# Calculate initial hash
self._update_hash()
def _calculate_hash(self, data: np.ndarray) -> str:
"""Calculate hash of numpy array for provenance tracking"""
return hashlib.sha256(data.tobytes()).hexdigest()[:16]
def _update_hash(self):
"""Update data hash after modifications"""
self.data_hash = self._calculate_hash(self.y_data)
def add_provenance(
self, operation: str, parameters: Dict[str, Any], operator: str = "system"
):
"""Add provenance record for operation"""
input_hash = self.data_hash
record = ProvenanceRecord(
operation=operation,
timestamp=datetime.now().isoformat(),
parameters=parameters,
input_hash=input_hash,
output_hash="", # Will be updated after operation
operator=operator,
)
self.provenance.append(record)
return record
def finalize_provenance(self, record: ProvenanceRecord):
"""Finalize provenance record with output hash"""
self._update_hash()
record.output_hash = self.data_hash
def apply_preprocessing(self, **kwargs) -> Tuple[np.ndarray, np.ndarray]:
"""Apply preprocessing with full provenance tracking"""
record = self.add_provenance("preprocessing", kwargs)
# Apply preprocessing
x_processed, y_processed = preprocess_spectrum(
self.x_data, self.y_data, **kwargs
)
# Update data and finalize provenance
self.x_data = x_processed
self.y_data = y_processed
self.finalize_provenance(record)
# Update metadata
if self.metadata.preprocessing_history is None:
self.metadata.preprocessing_history = []
self.metadata.preprocessing_history.append(
f"preprocessing_{datetime.now().isoformat()[:19]}"
)
return x_processed, y_processed
def to_dict(self) -> Dict[str, Any]:
"""Serialize to dictionary"""
return {
"x_data": self.x_data.tolist(),
"y_data": self.y_data.tolist(),
"metadata": self.metadata.to_dict(),
"label": self.label,
"provenance": [p.to_dict() for p in self.provenance],
"relationships": self.relationships,
"data_hash": self.data_hash,
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "ContextualSpectrum":
"""Deserialize from dictionary"""
spectrum = cls(
x_data=np.array(data["x_data"]),
y_data=np.array(data["y_data"]),
metadata=SpectralMetadata.from_dict(data["metadata"]),
label=data.get("label"),
)
spectrum.provenance = [
ProvenanceRecord.from_dict(p) for p in data["provenance"]
]
spectrum.relationships = data["relationships"]
spectrum.data_hash = data["data_hash"]
return spectrum
class KnowledgeGraph:
"""Knowledge graph for managing relationships between spectra and samples"""
def __init__(self):
self.nodes: Dict[str, ContextualSpectrum] = {}
self.edges: Dict[str, List[Dict[str, Any]]] = {}
def add_spectrum(self, spectrum: ContextualSpectrum, node_id: Optional[str] = None):
"""Add spectrum to knowledge graph"""
if node_id is None:
node_id = spectrum.data_hash
self.nodes[node_id] = spectrum
self.edges[node_id] = []
# Auto-detect relationships
self._detect_relationships(node_id)
def _detect_relationships(self, node_id: str):
"""Automatically detect relationships between spectra"""
current_spectrum = self.nodes[node_id]
for other_id, other_spectrum in self.nodes.items():
if other_id == node_id:
continue
# Check for similar acquisition conditions
if self._are_similar_conditions(current_spectrum, other_spectrum):
self.add_relationship(node_id, other_id, "similar_conditions", 0.8)
# Check for spectral similarity (simplified)
similarity = self._calculate_spectral_similarity(
current_spectrum.y_data, other_spectrum.y_data
)
if similarity > 0.9:
self.add_relationship(
node_id, other_id, "spectral_similarity", similarity
)
def _are_similar_conditions(
self, spec1: ContextualSpectrum, spec2: ContextualSpectrum
) -> bool:
"""Check if two spectra were acquired under similar conditions"""
meta1, meta2 = spec1.metadata, spec2.metadata
# Check instrument type
if meta1.instrument_type != meta2.instrument_type:
return False
# Check laser wavelength (if available)
if (
meta1.laser_wavelength
and meta2.laser_wavelength
and abs(meta1.laser_wavelength - meta2.laser_wavelength) > 1.0
):
return False
return True
def _calculate_spectral_similarity(
self, spec1: np.ndarray, spec2: np.ndarray
) -> float:
"""Calculate similarity between two spectra"""
if len(spec1) != len(spec2):
return 0.0
# Normalize spectra
spec1_norm = (spec1 - np.min(spec1)) / (np.max(spec1) - np.min(spec1) + 1e-8)
spec2_norm = (spec2 - np.min(spec2)) / (np.max(spec2) - np.min(spec2) + 1e-8)
# Calculate correlation coefficient
correlation = np.corrcoef(spec1_norm, spec2_norm)[0, 1]
return max(0.0, correlation)
def add_relationship(
self, node1: str, node2: str, relationship_type: str, weight: float
):
"""Add relationship between two nodes"""
edge = {
"target": node2,
"type": relationship_type,
"weight": weight,
"timestamp": datetime.now().isoformat(),
}
self.edges[node1].append(edge)
# Add reverse edge
reverse_edge = {
"target": node1,
"type": relationship_type,
"weight": weight,
"timestamp": datetime.now().isoformat(),
}
if node2 in self.edges:
self.edges[node2].append(reverse_edge)
def get_related_spectra(
self, node_id: str, relationship_type: Optional[str] = None
) -> List[str]:
"""Get spectra related to given node"""
if node_id not in self.edges:
return []
related = []
for edge in self.edges[node_id]:
if relationship_type is None or edge["type"] == relationship_type:
related.append(edge["target"])
return related
def export_knowledge_graph(self, filepath: str):
"""Export knowledge graph to JSON file"""
export_data = {
"nodes": {k: v.to_dict() for k, v in self.nodes.items()},
"edges": self.edges,
"metadata": {
"created": datetime.now().isoformat(),
"total_nodes": len(self.nodes),
"total_edges": sum(len(edges) for edges in self.edges.values()),
},
}
with open(filepath, "w", encoding="utf-8") as f:
json.dump(export_data, f, indent=2)
class EnhancedDataManager:
"""Main data management interface for POLYMEROS"""
def __init__(self, cache_dir: str = "data_cache"):
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
self.knowledge_graph = KnowledgeGraph()
self.quality_thresholds = {
"min_intensity": 10.0,
"min_signal_to_noise": 3.0,
"max_baseline_drift": 0.1,
}
def load_spectrum_with_context(
self, filepath: str, metadata: Optional[Dict[str, Any]] = None
) -> ContextualSpectrum:
"""Load spectrum with automatic metadata extraction and quality assessment"""
from scripts.plot_spectrum import load_spectrum
# Load raw data
x_data, y_data = load_spectrum(filepath)
# Extract metadata
if metadata is None:
metadata = self._extract_metadata_from_file(filepath)
spectral_metadata = SpectralMetadata(
filename=os.path.basename(filepath), **metadata
)
# Create contextual spectrum
spectrum = ContextualSpectrum(
np.array(x_data), np.array(y_data), spectral_metadata
)
# Assess data quality
quality_score = self._assess_data_quality(np.array(y_data))
spectrum.metadata.data_quality_score = quality_score
# Add to knowledge graph
self.knowledge_graph.add_spectrum(spectrum)
return spectrum
def _extract_metadata_from_file(self, filepath: str) -> Dict[str, Any]:
"""Extract metadata from filename and file properties"""
filename = os.path.basename(filepath)
metadata = {
"acquisition_date": datetime.fromtimestamp(
os.path.getmtime(filepath)
).isoformat(),
"instrument_type": "Raman", # Default
}
# Extract information from filename patterns
if "785nm" in filename.lower():
metadata["laser_wavelength"] = "785.0"
elif "532nm" in filename.lower():
metadata["laser_wavelength"] = "532.0"
return metadata
def _assess_data_quality(self, y_data: np.ndarray) -> float:
"""Assess spectral data quality using multiple metrics"""
scores = []
# Signal intensity check
max_intensity = np.max(y_data)
if max_intensity >= self.quality_thresholds["min_intensity"]:
scores.append(min(1.0, max_intensity / 1000.0))
else:
scores.append(0.0)
# Signal-to-noise ratio estimation
signal = np.mean(y_data)
noise = np.std(y_data[y_data < np.percentile(y_data, 10)])
snr = signal / (noise + 1e-8)
if snr >= self.quality_thresholds["min_signal_to_noise"]:
scores.append(min(1.0, snr / 10.0))
else:
scores.append(0.0)
# Baseline stability
baseline_variation = np.std(y_data) / (np.mean(y_data) + 1e-8)
baseline_score = max(
0.0,
1.0 - baseline_variation / self.quality_thresholds["max_baseline_drift"],
)
scores.append(baseline_score)
return float(np.mean(scores))
def preprocess_with_tracking(
self, spectrum: ContextualSpectrum, **preprocessing_params
) -> ContextualSpectrum:
"""Apply preprocessing with full tracking"""
spectrum.apply_preprocessing(**preprocessing_params)
return spectrum
def get_preprocessing_recommendations(
self, spectrum: ContextualSpectrum
) -> Dict[str, Any]:
"""Provide intelligent preprocessing recommendations based on data characteristics"""
recommendations = {}
y_data = spectrum.y_data
# Baseline correction recommendation
baseline_variation = np.std(np.diff(y_data))
if baseline_variation > 0.05:
recommendations["do_baseline"] = True
recommendations["degree"] = 3 if baseline_variation > 0.1 else 2
else:
recommendations["do_baseline"] = False
# Smoothing recommendation
noise_level = np.std(y_data[y_data < np.percentile(y_data, 20)])
if noise_level > 0.01:
recommendations["do_smooth"] = True
recommendations["window_length"] = 11 if noise_level > 0.05 else 7
else:
recommendations["do_smooth"] = False
# Normalization is generally recommended
recommendations["do_normalize"] = True
return recommendations
def save_session(self, session_name: str):
"""Save current data management session"""
session_file = self.cache_dir / f"{session_name}_session.json"
self.knowledge_graph.export_knowledge_graph(str(session_file))
def load_session(self, session_name: str):
"""Load saved data management session"""
session_file = self.cache_dir / f"{session_name}_session.json"
if session_file.exists():
with open(session_file, "r") as f:
data = json.load(f)
# Reconstruct knowledge graph
for node_id, node_data in data["nodes"].items():
spectrum = ContextualSpectrum.from_dict(node_data)
self.knowledge_graph.nodes[node_id] = spectrum
self.knowledge_graph.edges = data["edges"]