polymer-aging-ml / utils /model_optimization.py
devjas1
(FEAT)[Model Optimization Suite]: Add Model Optimization Suite for quantization, pruning, and benchmarking
73712cd
raw
history blame
11.5 kB
"""
Model performance optimization utilities.
Includes model quantization, pruning, and optimization techniques.
"""
import torch
import torch.nn as nn
import torch.nn.utils.prune as prune
from typing import Dict, Any, List, Optional, Tuple
import time
import numpy as np
from pathlib import Path
class ModelOptimizer:
"""Utility class for optimizing trained models."""
def __init__(self):
self.optimization_history = []
def quantize_model(
self, model: nn.Module, dtype: torch.dtype = torch.qint8
) -> nn.Module:
"""Apply dynamic quantization to reduce model size and inference time."""
# Prepare for quantization
model.eval()
# Apply dynamic quantization
quantized_model = torch.quantization.quantize_dynamic(
model, {nn.Linear, nn.Conv1d}, dtype=dtype # Layers to quantize
)
return quantized_model
def prune_model(
self, model: nn.Module, pruning_ratio: float = 0.2, structured: bool = False
) -> nn.Module:
"""Apply magnitude-based pruning to reduce model parameters."""
model_copy = type(model)(
model.input_length if hasattr(model, "input_length") else 500
)
model_copy.load_state_dict(model.state_dict())
# Collect modules to prune
modules_to_prune = []
for name, module in model_copy.named_modules():
if isinstance(module, (nn.Conv1d, nn.Linear)):
modules_to_prune.append((module, "weight"))
if structured:
# Structured pruning (entire channels/filters)
for module, param_name in modules_to_prune:
if isinstance(module, nn.Conv1d):
prune.ln_structured(
module, name=param_name, amount=pruning_ratio, n=2, dim=0
)
else:
prune.l1_unstructured(module, name=param_name, amount=pruning_ratio)
else:
# Unstructured pruning
prune.global_unstructured(
modules_to_prune,
pruning_method=prune.L1Unstructured,
amount=pruning_ratio,
)
# Make pruning permanent
for module, param_name in modules_to_prune:
prune.remove(module, param_name)
return model_copy
def optimize_for_inference(self, model: nn.Module) -> nn.Module:
"""Apply multiple optimizations for faster inference."""
model.eval()
# Fuse operations where possible
optimized_model = self._fuse_conv_bn(model)
# Apply quantization
optimized_model = self.quantize_model(optimized_model)
return optimized_model
def _fuse_conv_bn(self, model: nn.Module) -> nn.Module:
"""Fuse convolution and batch normalization layers."""
model_copy = type(model)(
model.input_length if hasattr(model, "input_length") else 500
)
model_copy.load_state_dict(model.state_dict())
# Simple fusion for sequential Conv1d + BatchNorm1d patterns
for name, module in model_copy.named_children():
if isinstance(module, nn.Sequential):
self._fuse_sequential_conv_bn(module)
return model_copy
def _fuse_sequential_conv_bn(self, sequential: nn.Sequential):
"""Fuse Conv1d + BatchNorm1d in sequential modules."""
layers = list(sequential.children())
i = 0
while i < len(layers) - 1:
if isinstance(layers[i], nn.Conv1d) and isinstance(
layers[i + 1], nn.BatchNorm1d
):
# Fuse the layers
if isinstance(layers[i], nn.Conv1d) and isinstance(
layers[i + 1], nn.BatchNorm1d
):
if isinstance(layers[i + 1], nn.BatchNorm1d):
if isinstance(layers[i], nn.Conv1d) and isinstance(
layers[i + 1], nn.BatchNorm1d
):
fused = self._fuse_conv_bn_layer(layers[i], layers[i + 1])
else:
fused = None
else:
fused = None
else:
fused = None
if fused:
# Replace in sequential
new_layers = layers[:i] + [fused] + layers[i + 2 :]
sequential = nn.Sequential(*new_layers)
layers = new_layers
i += 1
def _fuse_conv_bn_layer(self, conv: nn.Conv1d, bn: nn.BatchNorm1d) -> nn.Conv1d:
"""Fuse a single Conv1d and BatchNorm1d layer."""
# Create new conv layer
fused_conv = nn.Conv1d(
conv.in_channels,
conv.out_channels,
conv.kernel_size[0],
conv.stride[0] if isinstance(conv.stride, tuple) else conv.stride,
conv.padding[0] if isinstance(conv.padding, tuple) else conv.padding,
conv.dilation[0] if isinstance(conv.dilation, tuple) else conv.dilation,
conv.groups,
bias=True, # Always add bias after fusion
)
# Calculate fused parameters
w_conv = conv.weight.clone()
w_bn = bn.weight.clone()
b_bn = bn.bias.clone()
mean_bn = (
bn.running_mean.clone()
if bn.running_mean is not None
else torch.zeros_like(bn.weight)
)
var_bn = (
bn.running_var.clone()
if bn.running_var is not None
else torch.zeros_like(bn.weight)
)
eps = bn.eps
# Fuse weights
factor = w_bn / torch.sqrt(var_bn + eps)
fused_conv.weight.data = w_conv * factor.reshape(-1, 1, 1)
# Fuse bias
if conv.bias is not None:
b_conv = conv.bias.clone()
else:
b_conv = torch.zeros_like(b_bn)
fused_conv.bias.data = (b_conv - mean_bn) * factor + b_bn
return fused_conv
def benchmark_model(
self,
model: nn.Module,
input_shape: Tuple[int, ...] = (1, 1, 500),
num_runs: int = 100,
warmup_runs: int = 10,
) -> Dict[str, float]:
"""Benchmark model performance."""
model.eval()
# Create dummy input
dummy_input = torch.randn(input_shape)
# Warmup
with torch.no_grad():
for _ in range(warmup_runs):
_ = model(dummy_input)
# Benchmark
times = []
with torch.no_grad():
for _ in range(num_runs):
start_time = time.time()
_ = model(dummy_input)
end_time = time.time()
times.append(end_time - start_time)
# Calculate statistics
times = np.array(times)
# Count parameters
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# Calculate model size (approximate)
param_size = sum(p.numel() * p.element_size() for p in model.parameters())
buffer_size = sum(b.numel() * b.element_size() for b in model.buffers())
model_size_mb = (param_size + buffer_size) / (1024 * 1024)
return {
"mean_inference_time": float(np.mean(times)),
"std_inference_time": float(np.std(times)),
"min_inference_time": float(np.min(times)),
"max_inference_time": float(np.max(times)),
"fps": 1.0 / float(np.mean(times)),
"total_parameters": total_params,
"trainable_parameters": trainable_params,
"model_size_mb": model_size_mb,
}
def compare_optimizations(
self,
original_model: nn.Module,
optimizations: Optional[List[str]] = None,
input_shape: Tuple[int, ...] = (1, 1, 500),
) -> Dict[str, Dict[str, Any]]:
if optimizations is None:
optimizations = ["quantize", "prune", "full_optimize"]
results = {}
# Benchmark original model
results["original"] = self.benchmark_model(original_model, input_shape)
for opt in optimizations:
try:
if opt == "quantize":
optimized_model = self.quantize_model(original_model)
elif opt == "prune":
optimized_model = self.prune_model(
original_model, pruning_ratio=0.3
)
elif opt == "full_optimize":
optimized_model = self.optimize_for_inference(original_model)
else:
continue
# Benchmark optimized model
benchmark_results = self.benchmark_model(optimized_model, input_shape)
# Calculate improvements
speedup = (
results["original"]["mean_inference_time"]
/ benchmark_results["mean_inference_time"]
)
size_reduction = (
results["original"]["model_size_mb"]
- benchmark_results["model_size_mb"]
) / results["original"]["model_size_mb"]
param_reduction = (
results["original"]["total_parameters"]
- benchmark_results["total_parameters"]
) / results["original"]["total_parameters"]
benchmark_results.update(
{
"speedup": speedup,
"size_reduction_ratio": size_reduction,
"parameter_reduction_ratio": param_reduction,
}
)
results[opt] = benchmark_results
except (RuntimeError, ValueError, TypeError) as e:
results[opt] = {"error": str(e)}
return results
def suggest_optimizations(
self,
model: nn.Module,
target_speed: Optional[float] = None,
target_size: Optional[float] = None,
) -> List[str]:
"""Suggest optimization strategies based on requirements."""
suggestions = []
# Get baseline metrics
baseline = self.benchmark_model(model)
if target_speed and baseline["mean_inference_time"] > target_speed:
suggestions.append("Apply quantization for 2-4x speedup")
suggestions.append("Use pruning to reduce model size by 20-50%")
suggestions.append(
"Consider using EfficientSpectralCNN for real-time inference"
)
if target_size and baseline["model_size_mb"] > target_size:
suggestions.append("Apply magnitude-based pruning")
suggestions.append("Use quantization to reduce model size")
suggestions.append("Consider knowledge distillation to a smaller model")
# Model-specific suggestions
if baseline["total_parameters"] > 1000000:
suggestions.append(
"Model is large - consider using efficient architectures"
)
return suggestions