Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
73712cd
1
Parent(s):
5543304
(FEAT)[Model Optimization Suite]: Add Model Optimization Suite for quantization, pruning, and benchmarking
Browse files- Created `ModelOptimizer` class with utilities for:
- Dynamic quantization (`quantize_model`)
- Magnitude-based pruning (`prune_model`)
- Operation fusion (`optimize_for_inference`, `_fuse_conv_bn`)
- Benchmarking (`benchmark_model`) and multi-technique comparison (`compare_optimizations`)
- Optimization suggestions based on speed/size requirements
- Added reporting and model-saving functions:
- `create_optimization_report`
- `save_optimized_model`
- Enables detailed performance analysis, speed/size reduction, and export of optimized models.
- Designed for extensible
- utils/model_optimization.py +311 -0
utils/model_optimization.py
ADDED
|
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model performance optimization utilities.
|
| 3 |
+
Includes model quantization, pruning, and optimization techniques.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.utils.prune as prune
|
| 9 |
+
from typing import Dict, Any, List, Optional, Tuple
|
| 10 |
+
import time
|
| 11 |
+
import numpy as np
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class ModelOptimizer:
|
| 16 |
+
"""Utility class for optimizing trained models."""
|
| 17 |
+
|
| 18 |
+
def __init__(self):
|
| 19 |
+
self.optimization_history = []
|
| 20 |
+
|
| 21 |
+
def quantize_model(
|
| 22 |
+
self, model: nn.Module, dtype: torch.dtype = torch.qint8
|
| 23 |
+
) -> nn.Module:
|
| 24 |
+
"""Apply dynamic quantization to reduce model size and inference time."""
|
| 25 |
+
# Prepare for quantization
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
# Apply dynamic quantization
|
| 29 |
+
quantized_model = torch.quantization.quantize_dynamic(
|
| 30 |
+
model, {nn.Linear, nn.Conv1d}, dtype=dtype # Layers to quantize
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
return quantized_model
|
| 34 |
+
|
| 35 |
+
def prune_model(
|
| 36 |
+
self, model: nn.Module, pruning_ratio: float = 0.2, structured: bool = False
|
| 37 |
+
) -> nn.Module:
|
| 38 |
+
"""Apply magnitude-based pruning to reduce model parameters."""
|
| 39 |
+
model_copy = type(model)(
|
| 40 |
+
model.input_length if hasattr(model, "input_length") else 500
|
| 41 |
+
)
|
| 42 |
+
model_copy.load_state_dict(model.state_dict())
|
| 43 |
+
|
| 44 |
+
# Collect modules to prune
|
| 45 |
+
modules_to_prune = []
|
| 46 |
+
for name, module in model_copy.named_modules():
|
| 47 |
+
if isinstance(module, (nn.Conv1d, nn.Linear)):
|
| 48 |
+
modules_to_prune.append((module, "weight"))
|
| 49 |
+
|
| 50 |
+
if structured:
|
| 51 |
+
# Structured pruning (entire channels/filters)
|
| 52 |
+
for module, param_name in modules_to_prune:
|
| 53 |
+
if isinstance(module, nn.Conv1d):
|
| 54 |
+
prune.ln_structured(
|
| 55 |
+
module, name=param_name, amount=pruning_ratio, n=2, dim=0
|
| 56 |
+
)
|
| 57 |
+
else:
|
| 58 |
+
prune.l1_unstructured(module, name=param_name, amount=pruning_ratio)
|
| 59 |
+
else:
|
| 60 |
+
# Unstructured pruning
|
| 61 |
+
prune.global_unstructured(
|
| 62 |
+
modules_to_prune,
|
| 63 |
+
pruning_method=prune.L1Unstructured,
|
| 64 |
+
amount=pruning_ratio,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Make pruning permanent
|
| 68 |
+
for module, param_name in modules_to_prune:
|
| 69 |
+
prune.remove(module, param_name)
|
| 70 |
+
|
| 71 |
+
return model_copy
|
| 72 |
+
|
| 73 |
+
def optimize_for_inference(self, model: nn.Module) -> nn.Module:
|
| 74 |
+
"""Apply multiple optimizations for faster inference."""
|
| 75 |
+
model.eval()
|
| 76 |
+
|
| 77 |
+
# Fuse operations where possible
|
| 78 |
+
optimized_model = self._fuse_conv_bn(model)
|
| 79 |
+
|
| 80 |
+
# Apply quantization
|
| 81 |
+
optimized_model = self.quantize_model(optimized_model)
|
| 82 |
+
|
| 83 |
+
return optimized_model
|
| 84 |
+
|
| 85 |
+
def _fuse_conv_bn(self, model: nn.Module) -> nn.Module:
|
| 86 |
+
"""Fuse convolution and batch normalization layers."""
|
| 87 |
+
model_copy = type(model)(
|
| 88 |
+
model.input_length if hasattr(model, "input_length") else 500
|
| 89 |
+
)
|
| 90 |
+
model_copy.load_state_dict(model.state_dict())
|
| 91 |
+
|
| 92 |
+
# Simple fusion for sequential Conv1d + BatchNorm1d patterns
|
| 93 |
+
for name, module in model_copy.named_children():
|
| 94 |
+
if isinstance(module, nn.Sequential):
|
| 95 |
+
self._fuse_sequential_conv_bn(module)
|
| 96 |
+
|
| 97 |
+
return model_copy
|
| 98 |
+
|
| 99 |
+
def _fuse_sequential_conv_bn(self, sequential: nn.Sequential):
|
| 100 |
+
"""Fuse Conv1d + BatchNorm1d in sequential modules."""
|
| 101 |
+
layers = list(sequential.children())
|
| 102 |
+
i = 0
|
| 103 |
+
while i < len(layers) - 1:
|
| 104 |
+
if isinstance(layers[i], nn.Conv1d) and isinstance(
|
| 105 |
+
layers[i + 1], nn.BatchNorm1d
|
| 106 |
+
):
|
| 107 |
+
# Fuse the layers
|
| 108 |
+
if isinstance(layers[i], nn.Conv1d) and isinstance(
|
| 109 |
+
layers[i + 1], nn.BatchNorm1d
|
| 110 |
+
):
|
| 111 |
+
if isinstance(layers[i + 1], nn.BatchNorm1d):
|
| 112 |
+
if isinstance(layers[i], nn.Conv1d) and isinstance(
|
| 113 |
+
layers[i + 1], nn.BatchNorm1d
|
| 114 |
+
):
|
| 115 |
+
fused = self._fuse_conv_bn_layer(layers[i], layers[i + 1])
|
| 116 |
+
else:
|
| 117 |
+
fused = None
|
| 118 |
+
else:
|
| 119 |
+
fused = None
|
| 120 |
+
else:
|
| 121 |
+
fused = None
|
| 122 |
+
if fused:
|
| 123 |
+
# Replace in sequential
|
| 124 |
+
new_layers = layers[:i] + [fused] + layers[i + 2 :]
|
| 125 |
+
sequential = nn.Sequential(*new_layers)
|
| 126 |
+
layers = new_layers
|
| 127 |
+
i += 1
|
| 128 |
+
|
| 129 |
+
def _fuse_conv_bn_layer(self, conv: nn.Conv1d, bn: nn.BatchNorm1d) -> nn.Conv1d:
|
| 130 |
+
"""Fuse a single Conv1d and BatchNorm1d layer."""
|
| 131 |
+
# Create new conv layer
|
| 132 |
+
fused_conv = nn.Conv1d(
|
| 133 |
+
conv.in_channels,
|
| 134 |
+
conv.out_channels,
|
| 135 |
+
conv.kernel_size[0],
|
| 136 |
+
conv.stride[0] if isinstance(conv.stride, tuple) else conv.stride,
|
| 137 |
+
conv.padding[0] if isinstance(conv.padding, tuple) else conv.padding,
|
| 138 |
+
conv.dilation[0] if isinstance(conv.dilation, tuple) else conv.dilation,
|
| 139 |
+
conv.groups,
|
| 140 |
+
bias=True, # Always add bias after fusion
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Calculate fused parameters
|
| 144 |
+
w_conv = conv.weight.clone()
|
| 145 |
+
w_bn = bn.weight.clone()
|
| 146 |
+
b_bn = bn.bias.clone()
|
| 147 |
+
mean_bn = (
|
| 148 |
+
bn.running_mean.clone()
|
| 149 |
+
if bn.running_mean is not None
|
| 150 |
+
else torch.zeros_like(bn.weight)
|
| 151 |
+
)
|
| 152 |
+
var_bn = (
|
| 153 |
+
bn.running_var.clone()
|
| 154 |
+
if bn.running_var is not None
|
| 155 |
+
else torch.zeros_like(bn.weight)
|
| 156 |
+
)
|
| 157 |
+
eps = bn.eps
|
| 158 |
+
|
| 159 |
+
# Fuse weights
|
| 160 |
+
factor = w_bn / torch.sqrt(var_bn + eps)
|
| 161 |
+
fused_conv.weight.data = w_conv * factor.reshape(-1, 1, 1)
|
| 162 |
+
|
| 163 |
+
# Fuse bias
|
| 164 |
+
if conv.bias is not None:
|
| 165 |
+
b_conv = conv.bias.clone()
|
| 166 |
+
else:
|
| 167 |
+
b_conv = torch.zeros_like(b_bn)
|
| 168 |
+
|
| 169 |
+
fused_conv.bias.data = (b_conv - mean_bn) * factor + b_bn
|
| 170 |
+
|
| 171 |
+
return fused_conv
|
| 172 |
+
|
| 173 |
+
def benchmark_model(
|
| 174 |
+
self,
|
| 175 |
+
model: nn.Module,
|
| 176 |
+
input_shape: Tuple[int, ...] = (1, 1, 500),
|
| 177 |
+
num_runs: int = 100,
|
| 178 |
+
warmup_runs: int = 10,
|
| 179 |
+
) -> Dict[str, float]:
|
| 180 |
+
"""Benchmark model performance."""
|
| 181 |
+
model.eval()
|
| 182 |
+
|
| 183 |
+
# Create dummy input
|
| 184 |
+
dummy_input = torch.randn(input_shape)
|
| 185 |
+
|
| 186 |
+
# Warmup
|
| 187 |
+
with torch.no_grad():
|
| 188 |
+
for _ in range(warmup_runs):
|
| 189 |
+
_ = model(dummy_input)
|
| 190 |
+
|
| 191 |
+
# Benchmark
|
| 192 |
+
times = []
|
| 193 |
+
with torch.no_grad():
|
| 194 |
+
for _ in range(num_runs):
|
| 195 |
+
start_time = time.time()
|
| 196 |
+
_ = model(dummy_input)
|
| 197 |
+
end_time = time.time()
|
| 198 |
+
times.append(end_time - start_time)
|
| 199 |
+
|
| 200 |
+
# Calculate statistics
|
| 201 |
+
times = np.array(times)
|
| 202 |
+
|
| 203 |
+
# Count parameters
|
| 204 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 205 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 206 |
+
|
| 207 |
+
# Calculate model size (approximate)
|
| 208 |
+
param_size = sum(p.numel() * p.element_size() for p in model.parameters())
|
| 209 |
+
buffer_size = sum(b.numel() * b.element_size() for b in model.buffers())
|
| 210 |
+
model_size_mb = (param_size + buffer_size) / (1024 * 1024)
|
| 211 |
+
|
| 212 |
+
return {
|
| 213 |
+
"mean_inference_time": float(np.mean(times)),
|
| 214 |
+
"std_inference_time": float(np.std(times)),
|
| 215 |
+
"min_inference_time": float(np.min(times)),
|
| 216 |
+
"max_inference_time": float(np.max(times)),
|
| 217 |
+
"fps": 1.0 / float(np.mean(times)),
|
| 218 |
+
"total_parameters": total_params,
|
| 219 |
+
"trainable_parameters": trainable_params,
|
| 220 |
+
"model_size_mb": model_size_mb,
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
def compare_optimizations(
|
| 224 |
+
self,
|
| 225 |
+
original_model: nn.Module,
|
| 226 |
+
optimizations: Optional[List[str]] = None,
|
| 227 |
+
input_shape: Tuple[int, ...] = (1, 1, 500),
|
| 228 |
+
) -> Dict[str, Dict[str, Any]]:
|
| 229 |
+
if optimizations is None:
|
| 230 |
+
optimizations = ["quantize", "prune", "full_optimize"]
|
| 231 |
+
results = {}
|
| 232 |
+
|
| 233 |
+
# Benchmark original model
|
| 234 |
+
results["original"] = self.benchmark_model(original_model, input_shape)
|
| 235 |
+
|
| 236 |
+
for opt in optimizations:
|
| 237 |
+
try:
|
| 238 |
+
if opt == "quantize":
|
| 239 |
+
optimized_model = self.quantize_model(original_model)
|
| 240 |
+
elif opt == "prune":
|
| 241 |
+
optimized_model = self.prune_model(
|
| 242 |
+
original_model, pruning_ratio=0.3
|
| 243 |
+
)
|
| 244 |
+
elif opt == "full_optimize":
|
| 245 |
+
optimized_model = self.optimize_for_inference(original_model)
|
| 246 |
+
else:
|
| 247 |
+
continue
|
| 248 |
+
|
| 249 |
+
# Benchmark optimized model
|
| 250 |
+
benchmark_results = self.benchmark_model(optimized_model, input_shape)
|
| 251 |
+
|
| 252 |
+
# Calculate improvements
|
| 253 |
+
speedup = (
|
| 254 |
+
results["original"]["mean_inference_time"]
|
| 255 |
+
/ benchmark_results["mean_inference_time"]
|
| 256 |
+
)
|
| 257 |
+
size_reduction = (
|
| 258 |
+
results["original"]["model_size_mb"]
|
| 259 |
+
- benchmark_results["model_size_mb"]
|
| 260 |
+
) / results["original"]["model_size_mb"]
|
| 261 |
+
param_reduction = (
|
| 262 |
+
results["original"]["total_parameters"]
|
| 263 |
+
- benchmark_results["total_parameters"]
|
| 264 |
+
) / results["original"]["total_parameters"]
|
| 265 |
+
|
| 266 |
+
benchmark_results.update(
|
| 267 |
+
{
|
| 268 |
+
"speedup": speedup,
|
| 269 |
+
"size_reduction_ratio": size_reduction,
|
| 270 |
+
"parameter_reduction_ratio": param_reduction,
|
| 271 |
+
}
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
results[opt] = benchmark_results
|
| 275 |
+
|
| 276 |
+
except (RuntimeError, ValueError, TypeError) as e:
|
| 277 |
+
results[opt] = {"error": str(e)}
|
| 278 |
+
|
| 279 |
+
return results
|
| 280 |
+
|
| 281 |
+
def suggest_optimizations(
|
| 282 |
+
self,
|
| 283 |
+
model: nn.Module,
|
| 284 |
+
target_speed: Optional[float] = None,
|
| 285 |
+
target_size: Optional[float] = None,
|
| 286 |
+
) -> List[str]:
|
| 287 |
+
"""Suggest optimization strategies based on requirements."""
|
| 288 |
+
suggestions = []
|
| 289 |
+
|
| 290 |
+
# Get baseline metrics
|
| 291 |
+
baseline = self.benchmark_model(model)
|
| 292 |
+
|
| 293 |
+
if target_speed and baseline["mean_inference_time"] > target_speed:
|
| 294 |
+
suggestions.append("Apply quantization for 2-4x speedup")
|
| 295 |
+
suggestions.append("Use pruning to reduce model size by 20-50%")
|
| 296 |
+
suggestions.append(
|
| 297 |
+
"Consider using EfficientSpectralCNN for real-time inference"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
if target_size and baseline["model_size_mb"] > target_size:
|
| 301 |
+
suggestions.append("Apply magnitude-based pruning")
|
| 302 |
+
suggestions.append("Use quantization to reduce model size")
|
| 303 |
+
suggestions.append("Consider knowledge distillation to a smaller model")
|
| 304 |
+
|
| 305 |
+
# Model-specific suggestions
|
| 306 |
+
if baseline["total_parameters"] > 1000000:
|
| 307 |
+
suggestions.append(
|
| 308 |
+
"Model is large - consider using efficient architectures"
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
return suggestions
|