polymer-aging-ml / utils /multifile.py
devjas1
(FEAT)[Data Parsing]: Support multi-format spectrum parsing and robust validation
0a4f1a6
raw
history blame
21.6 kB
"""Multi-file processing utilities for batch inference.
Handles multiple file uploads and iterative processing.
Supports TXT, CSV, and JSON file formats with automatic detection."""
from typing import List, Dict, Any, Tuple, Optional, Union
import time
import streamlit as st
import numpy as np
import pandas as pd
import json
import csv
import io
from pathlib import Path
from .preprocessing import resample_spectrum
from .errors import ErrorHandler, safe_execute
from .results_manager import ResultsManager
from .confidence import calculate_softmax_confidence
def detect_file_format(filename: str, content: str) -> str:
"""Automatically detect file format based on exstention and content
Args:
filename: Name of the file
content: Content of the file
Returns:
File format: .'txt', .'csv', .'json'
"""
# First try by extension
suffix = Path(filename).suffix.lower()
if suffix == ".json":
try:
json.loads(content)
return "json"
except:
pass
elif suffix == ".csv":
return "csv"
elif suffix == ".txt":
return "txt"
# If extension doesn't match or is unclear, try content detection
content_stripped = content.strip()
# Try JSON
if content_stripped.startswith(("{", "[")):
try:
json.loads(content)
return "json"
except:
pass
# Try CSV (look for commas in first few lines)
lines = content_stripped.split("\n")[:5]
comma_count = sum(line.count(",") for line in lines)
if comma_count > len(lines): # More commas than lines suggests CSV
return "csv"
# Default to TXT
return "txt"
# /////////////////////////////////////////////////////
def parse_json_spectrum(
content: str, filename: str = "unknown"
) -> Tuple[np.ndarray, np.ndarray]:
"""
Parse spectrum data from JSON format.
Expected formats:
- {"wavenumbers": [...], "intensities": [...]}
- {"x": [...], "y": [...]}
- [{"wavenumber": val, "intensity": val}, ...]
"""
try:
data = json.load(content)
# Format 1: Object with arrays
if isinstance(data, dict):
x_key = None
y_key = None
# Try common key names for x-axis
for key in ["wavenumbers", "wavenumber", "x", "freq", "frequency"]:
if key in data:
x_key = key
break
# Try common key names for y-axis
for key in ["intensities", "intensity", "y", "counts", "absorbance"]:
if key in data:
y_key = key
break
if x_key and y_key:
x_vals = np.array(data[x_key], dtype=float)
y_vals = np.array(data[y_key], dtype=float)
return x_vals, y_vals
# Format 2: Array of objects
elif isinstance(data, list) and len(data) > 0 and isinstance(data[0], dict):
x_vals = []
y_vals = []
for item in data:
# Try to find x and y values
x_val = None
y_val = None
for x_key in ["wavenumber", "wavenumbers", "x", "freq"]:
if x_key in item:
x_val = float(item[x_key])
break
for y_key in ["intensity", "intensities", "y", "counts"]:
if y_key in item:
y_val = float(item[y_key])
break
if x_val is not None and y_val is not None:
x_vals.append(x_val)
y_vals.append(y_val)
if x_vals and y_vals:
return np.array(x_vals), np.array(y_vals)
raise ValueError(
"JSON format not recognized. Expected wavenumber/intensity pairs."
)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON format: {str(e)}")
except Exception as e:
raise ValueError(f"Failed to parse JSON spectrum: {str(e)}")
# /////////////////////////////////////////////////////
def parse_csv_spectrum(
content: str, filename: str = "unknown"
) -> Tuple[np.ndarray, np.ndarray]:
"""
Parse spectrum data from CSV format.
Handles various CSV formats with headers or without.
"""
try:
# Use StringIO to treat string as file-like object
csv_file = io.StringIO(content)
# Try to detect delimiter
sample = content[:1024]
delimiter = ","
if sample.count(";") > sample.count(","):
delimiter = ";"
elif sample.count("\t") > sample.count(","):
delimiter = "\t"
# Read CSV
csv_reader = csv.reader(csv_file, delimiter=delimiter)
rows = list(csv_reader)
if not rows:
raise ValueError("Empty CSV file")
# Check if first row is header
has_header = False
try:
# If first row contains non-numeric data, it's likely a header
float(rows[0][0])
float(rows[0][1])
except (ValueError, IndexError):
has_header = True
data_rows = rows[1:] if has_header else rows
# Extract x and y values
x_vals = []
y_vals = []
for i, row in enumerate(data_rows):
if len(row) < 2:
continue
try:
x_val = float(row[0])
y_val = float(row[1])
x_vals.append(x_val)
y_vals.append(y_val)
except ValueError:
ErrorHandler.log_warning(
f"Could not parse CSV row {i+1}: {row}", f"Parsing {filename}"
)
continue
if len(x_vals) < 10:
raise ValueError(
f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
)
return np.array(x_vals), np.array(y_vals)
except Exception as e:
raise ValueError(f"Failed to parse CSV spectrum: {str(e)}")
# /////////////////////////////////////////////////////
def parse_spectrum_data(
text_content: str, filename: str = "unknown", file_format: Optional[str] = None
) -> Tuple[np.ndarray, np.ndarray]:
"""
Parse spectrum data from text content with automatic format detection.
Args:
text_content: Raw text content of the spectrum file
filename: Name of the file for error reporting
file_format: Force specific format ('txt', 'csv', 'json') or None for auto-detection
Returns:
Tuple of (x_values, y_values) as numpy arrays
Raises:
ValueError: If the data cannot be parsed
"""
try:
# Detect format if not specified
if file_format is None:
file_format = detect_file_format(filename, text_content)
# Parse based on detected/specified format
if file_format == "json":
x, y = parse_json_spectrum(text_content, filename)
elif file_format == "csv":
x, y = parse_csv_spectrum(text_content, filename)
else: # Default to TXT format
x, y = parse_txt_spectrum(text_content, filename)
# Common validation for all formats
validate_spectrum_data(x, y, filename)
return x, y
except Exception as e:
raise ValueError(f"Failed to parse spectrum data: {str(e)}")
# /////////////////////////////////////////////////////
def parse_txt_spectrum(
content: str, filename: str = "unknown"
) -> Tuple[np.ndarray, np.ndarray]:
"""
Parse spectrum data from TXT format (original implementation).
"""
lines = content.strip().split("\n")
# ==Remove empty lines and comments==
data_lines = []
for line in lines:
line = line.strip()
if line and not line.startswith("#") and not line.startswith("%"):
data_lines.append(line)
if not data_lines:
raise ValueError("No data lines found in file")
# ==Try to parse==
x_vals, y_vals = [], []
for i, line in enumerate(data_lines):
try:
# Handle different separators
parts = line.replace(",", " ").split()
numbers = [
p
for p in parts
if p.replace(".", "", 1)
.replace("-", "", 1)
.replace("+", "", 1)
.isdigit()
]
if len(numbers) >= 2:
x_val = float(numbers[0])
y_val = float(numbers[1])
x_vals.append(x_val)
y_vals.append(y_val)
except ValueError:
ErrorHandler.log_warning(
f"Could not parse line {i+1}: {line}", f"Parsing {filename}"
)
continue
if len(x_vals) < 10: # ==Need minimum points for interpolation==
raise ValueError(
f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
)
return np.array(x_vals), np.array(y_vals)
# /////////////////////////////////////////////////////
def validate_spectrum_data(x: np.ndarray, y: np.ndarray, filename: str) -> None:
"""
Validate parsed spectrum data for common issues.
"""
# Check for NaNs
if np.any(np.isnan(x)) or np.any(np.isnan(y)):
raise ValueError("Input data contains NaN values")
# Check monotonic increasing x (sort if needed)
if not np.all(np.diff(x) >= 0):
# Sort by x values if not monotonic
sort_idx = np.argsort(x)
x = x[sort_idx]
y = y[sort_idx]
ErrorHandler.log_warning(
"Wavenumbers were not monotonic - data has been sorted",
f"Parsing {filename}",
)
# Check reasonable range for spectroscopy
if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100:
ErrorHandler.log_warning(
f"Unusual wavenumber range: {min(x):.1f} - {max(x):.1f} cm⁻¹",
f"Parsing {filename}",
)
# /////////////////////////////////////////////////////
def process_single_file(
filename: str,
text_content: str,
model_choice: str,
load_model_func,
run_inference_func,
label_file_func,
) -> Optional[Dict[str, Any]]:
"""
Process a single spectrum file
Args:
filename: Name of the file
text_content: Raw text content
model_choice: Selected model name
load_model_func: Function to load the model
run_inference_func: Function to run inference
label_file_func: Function to extract ground truth label
Returns:
Dictionary with processing results or None if failed
"""
start_time = time.time()
try:
# ==Parse spectrum data==
result, success = safe_execute(
parse_spectrum_data,
text_content,
filename,
error_context=f"parsing {filename}",
show_error=False,
)
if not success or result is None:
return None
x_raw, y_raw = result
# ==Resample spectrum==
result, success = safe_execute(
resample_spectrum,
x_raw,
y_raw,
500, # TARGET_LEN
error_context=f"resampling {filename}",
show_error=False,
)
if not success or result is None:
return None
x_resampled, y_resampled = result
# ==Run inference==
result, success = safe_execute(
run_inference_func,
y_resampled,
model_choice,
error_context=f"inference on {filename}",
show_error=False,
)
if not success or result is None:
ErrorHandler.log_error(
Exception("Inference failed"), f"processing {filename}"
)
return None
prediction, logits_list, probs, inference_time, logits = result
# ==Calculate confidence==
if logits is not None:
probs_np, max_confidence, confidence_level, confidence_emoji = (
calculate_softmax_confidence(logits)
)
else:
probs_np = np.array([])
max_confidence = 0.0
confidence_level = "LOW"
confidence_emoji = "🔴"
# ==Get ground truth==
try:
ground_truth = label_file_func(filename)
ground_truth = ground_truth if ground_truth >= 0 else None
except Exception:
ground_truth = None
# ==Get predicted class==
label_map = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
predicted_class = label_map.get(prediction, f"Unknown ({prediction})")
processing_time = time.time() - start_time
return {
"filename": filename,
"success": True,
"prediction": prediction,
"predicted_class": predicted_class,
"confidence": max_confidence,
"confidence_level": confidence_level,
"confidence_emoji": confidence_emoji,
"logits": logits_list if logits_list else [],
"probabilities": probs_np.tolist() if len(probs_np) > 0 else [],
"ground_truth": ground_truth,
"processing_time": processing_time,
"x_raw": x_raw,
"y_raw": y_raw,
"x_resampled": x_resampled,
"y_resampled": y_resampled,
}
except Exception as e:
ErrorHandler.log_error(e, f"processing {filename}")
return {
"filename": filename,
"success": False,
"error": str(e),
"processing_time": time.time() - start_time,
}
def process_multiple_files(
uploaded_files: List,
model_choice: str,
load_model_func,
run_inference_func,
label_file_func,
progress_callback=None,
) -> List[Dict[str, Any]]:
"""
Process multiple uploaded files
Args:
uploaded_files: List of uploaded file objects
model_choice: Selected model name
load_model_func: Function to load the model
run_inference_func: Function to run inference
label_file_func: Function to extract ground truth label
progress_callback: Optional callback to update progress
Returns:
List of processing results
"""
results = []
total_files = len(uploaded_files)
ErrorHandler.log_info(f"Starting batch processing of {total_files} files")
for i, uploaded_file in enumerate(uploaded_files):
if progress_callback:
progress_callback(i, total_files, uploaded_file.name)
try:
# ==Read file content==
raw = uploaded_file.read()
text_content = raw.decode("utf-8") if isinstance(raw, bytes) else raw
# ==Process the file==
result = process_single_file(
uploaded_file.name,
text_content,
model_choice,
load_model_func,
run_inference_func,
label_file_func,
)
if result:
results.append(result)
# ==Add successful results to the results manager==
if result.get("success", False):
ResultsManager.add_results(
filename=result["filename"],
model_name=model_choice,
prediction=result["prediction"],
predicted_class=result["predicted_class"],
confidence=result["confidence"],
logits=result["logits"],
ground_truth=result["ground_truth"],
processing_time=result["processing_time"],
metadata={
"confidence_level": result["confidence_level"],
"confidence_emoji": result["confidence_emoji"],
},
)
except Exception as e:
ErrorHandler.log_error(e, f"reading file {uploaded_file.name}")
results.append(
{
"filename": uploaded_file.name,
"success": False,
"error": f"Failed to read file: {str(e)}",
}
)
if progress_callback:
progress_callback(total_files, total_files, "Complete")
ErrorHandler.log_info(
f"Completed batch processing: {sum(1 for r in results if r.get('success', False))}/{total_files} successful"
)
return results
def display_batch_results(batch_results: list):
"""Renders a clean, consolidated summary of batch processing results using metrics and a pandas DataFrame replacing the old expander list"""
if not batch_results:
st.info("No batch results to display.")
return
successful_runs = [r for r in batch_results if r.get("success", False)]
failed_runs = [r for r in batch_results if not r.get("success", False)]
# 1. High Level Metrics
st.markdown("###### Batch Summary")
metric_cols = st.columns(3)
metric_cols[0].metric("Total Files Processed", f"{len(batch_results)}")
metric_cols[1].metric("✔️ Successful", f"{len(successful_runs)}")
metric_cols[2].metric("❌ Failed", f"{len(failed_runs)}")
# 3 Hidden Failure Details
if failed_runs:
with st.expander(
f"View details for {len(failed_runs)} failed file(s)", expanded=False
):
for r in failed_runs:
st.error(f"**File:** `{r.get('filename', 'unknown')}`")
st.caption(
f"Reason for failure: {r.get('error', 'No details provided')}"
)
# Legacy display batch results
# def display_batch_results(results: List[Dict[str, Any]]) -> None:
# """
# Display batch processing results in the UI
# Args:
# results: List of processing results
# """
# if not results:
# st.warning("No results to display")
# return
# successful = [r for r in results if r.get("success", False)]
# failed = [r for r in results if not r.get("success", False)]
# # ==Summary==
# col1, col2, col3 = st.columns(3, border=True)
# with col1:
# st.metric("Total Files", len(results))
# with col2:
# st.metric("Successful", len(successful),
# delta=f"{len(successful)/len(results)*100:.1f}%")
# with col3:
# st.metric("Failed", len(
# failed), delta=f"-{len(failed)/len(results)*100:.1f}%" if failed else "0%")
# # ==Results tabs==
# tab1, tab2 = st.tabs(["✅Successful", "❌ Failed"], width="stretch")
# with tab1:
# with st.expander("Successful"):
# if successful:
# for result in successful:
# with st.expander(f"{result['filename']}", expanded=False):
# col1, col2 = st.columns(2)
# with col1:
# st.write(
# f"**Prediction:** {result['predicted_class']}")
# st.write(
# f"**Confidence:** {result['confidence_emoji']} {result['confidence_level']} ({result['confidence']:.3f})")
# with col2:
# st.write(
# f"**Processing Time:** {result['processing_time']:.3f}s")
# if result['ground_truth'] is not None:
# gt_label = {0: "Stable", 1: "Weathered"}.get(
# result['ground_truth'], "Unknown")
# correct = "✅" if result['prediction'] == result['ground_truth'] else "❌"
# st.write(
# f"**Ground Truth:** {gt_label} {correct}")
# else:
# st.info("No successful results")
# with tab2:
# if failed:
# for result in failed:
# with st.expander(f"❌ {result['filename']}", expanded=False):
# st.error(f"Error: {result.get('error', 'Unknown error')}")
# else:
# st.success("No failed files!")
def create_batch_uploader() -> List:
"""
Create multi-file uploader widget
Returns:
List of uploaded files
"""
uploaded_files = st.file_uploader(
"Upload multiple Raman spectrum files (.txt)",
type="txt",
accept_multiple_files=True,
help="Select multiple .txt files with wavenumber and intensity columns",
key="batch_uploader",
)
return uploaded_files if uploaded_files else []