Spaces:
Sleeping
Sleeping
| """Advanced Spectroscopy Integration Module | |
| Support dual FTIR + Raman spectroscopy with ATR-FTIR integration""" | |
| import numpy as np | |
| from scipy.integrate import trapz | |
| from typing import Dict, List, Tuple, Optional, Any | |
| from dataclasses import dataclass | |
| from scipy import signal | |
| import scipy.sparse as sparse | |
| from scipy.sparse.linalg import spsolve | |
| from scipy.interpolate import interp1d | |
| from sklearn.preprocessing import StandardScaler, MinMaxScaler | |
| from sklearn.decomposition import PCA | |
| from scipy.signal import find_peaks | |
| from scipy.ndimage import gaussian_filter1d | |
| class SpectroscopyType: | |
| """Define spectroscopy types and their characteristics""" | |
| FTIR = "FTIR" | |
| ATR_FTIR = "ATR-FTIR" | |
| RAMAN = "Raman" | |
| TRANSMISSION_FTIR = "Transmission-FTIR" | |
| REFLECTION_FTIR = "Reflection-FTIR" | |
| class SpectralCharacteristics: | |
| """Characteristics of different spectroscopy techniques""" | |
| technique: str | |
| wavenumber_range: Tuple[float, float] # cm-1 | |
| typical_resolution: float # cm-1 | |
| sample_requirements: str | |
| penetration_depth: Optional[str] = None | |
| advantages: Optional[List[str]] = None | |
| limitations: Optional[List[str]] = None | |
| # Define characteristics for each technique | |
| SPECTRAL_CHARACTERISTICS = { | |
| SpectroscopyType.FTIR: SpectralCharacteristics( | |
| technique="FTIR", | |
| wavenumber_range=(400.0, 4000.0), | |
| typical_resolution=4.0, | |
| sample_requirements="Various (solid, liquid, gas)", | |
| penetration_depth="Variable", | |
| advantages=["High spectral resolution", "Wide range", "Quantitative"], | |
| limitations=["Water interference", "Sample preparation"], | |
| ), | |
| SpectroscopyType.ATR_FTIR: SpectralCharacteristics( | |
| technique="ATR-FTIR", | |
| wavenumber_range=(600.0, 4000.0), | |
| typical_resolution=4.0, | |
| sample_requirements="Direct solid contact", | |
| penetration_depth="0.5-2 μm", | |
| advantages=["Minimal sample prep", "Solid samples", "Quick analysis"], | |
| limitations=["Surface analysis only", "Pressure sensitive"], | |
| ), | |
| SpectroscopyType.RAMAN: SpectralCharacteristics( | |
| technique="Raman", | |
| wavenumber_range=(200, 3500), | |
| typical_resolution=1.0, | |
| sample_requirements="Various (solid, liquid)", | |
| penetration_depth="Variable", | |
| advantages=["Water compatible", "Non-destructive", "Molecular vibrations"], | |
| limitations=["Fluorescence interference", "Weak signals"], | |
| ), | |
| } | |
| class AdvancedPreprocessor: | |
| """Advanced preprocessing pipeline for multi-modal spectroscopy data""" | |
| def __init__(self): | |
| self.techniques_applied = [] | |
| self.preprocessing_log = [] | |
| def baseline_correction( | |
| self, | |
| wavenumber: np.ndarray, | |
| intensities: np.ndarray, | |
| method: str = "airpls", | |
| **kwargs, | |
| ) -> Tuple[np.ndarray, Dict]: | |
| """ | |
| Advanced baseline correction methods | |
| Args: | |
| wavenumber: Wavenumber array | |
| intensities: Intensity array | |
| method: Baseline correction method ('airpls', 'als', 'polynomial', 'rolling_ball') | |
| **kwargs: Method-specific parameters | |
| Returns: | |
| Corrected intensities and processing metadata | |
| """ | |
| metadata = { | |
| "method": method, | |
| "original_range": (intensities.min(), intensities.max()), | |
| } | |
| corrected_intensities = intensities.copy() | |
| if method == "airpls": | |
| corrected_intensities = self._airpls_baseline(intensities, **kwargs) | |
| elif method == "als": | |
| corrected_intensities = self._als_baseline(intensities, **kwargs) | |
| elif method == "polynomial": | |
| degree = kwargs.get("degree", 3) | |
| coeffs = np.polyfit(wavenumber, intensities, degree) | |
| baseline = np.polyval(coeffs, wavenumber) | |
| corrected_intensities = intensities - baseline | |
| metadata["polynomial_degree"] = degree | |
| elif method == "rolling_ball": | |
| ball_radius = kwargs.get("radius", 50) | |
| corrected_intensities = self._rolling_ball_baseline( | |
| intensities, ball_radius | |
| ) | |
| metadata["ball_radius"] = ball_radius | |
| self.preprocessing_log.append(f"Baseline correction: {method}") | |
| metadata["corrected_range"] = ( | |
| corrected_intensities.min(), | |
| corrected_intensities.max(), | |
| ) | |
| return corrected_intensities, metadata | |
| def _airpls_baseline( | |
| self, y: np.ndarray, lambda_: float = 1e4, itermax: int = 15 | |
| ) -> np.ndarray: | |
| """ | |
| Adaptive Iteratively Reweighted Penalized Least Squares baseline correction | |
| """ | |
| m = len(y) | |
| D = sparse.diags([1, -2, 1], offsets=[0, -1, -2], shape=(m, m - 2)) | |
| D = lambda_ * D.dot(D.transpose()) | |
| w = np.ones(m) | |
| for i in range(itermax): | |
| W = sparse.spdiags(w, 0, m, m) | |
| Z = W + D | |
| z = spsolve(Z, w * y) | |
| d = y - z | |
| dn = d[d < 0] | |
| m_dn = np.mean(dn) if len(dn) > 0 else 0 | |
| s_dn = np.std(dn) if len(dn) > 1 else 1 | |
| wt = 1.0 / (1 + np.exp(2 * (d - (2 * s_dn - m_dn)) / s_dn)) | |
| if np.linalg.norm(w - wt) / np.linalg.norm(w) < 1e-9: | |
| break | |
| w = wt | |
| z = spsolve(sparse.spdiags(w, 0, m, m) + D, w * y) | |
| return y - z | |
| def _als_baseline( | |
| self, y: np.ndarray, lambda_: float = 1e4, p: float = 0.001 | |
| ) -> np.ndarray: | |
| """ | |
| Asymmetric Least Squares baseline correction | |
| """ | |
| m = len(y) | |
| D = sparse.diags([1, -2, 1], [0, -1, -2], shape=(m, m - 2)) | |
| D_t_D = D.dot(D.transpose()) | |
| w = np.ones(m) | |
| for _ in range(10): | |
| W = sparse.spdiags(w, 0, m, m) | |
| Z = W + lambda_ * D_t_D | |
| z = spsolve(Z, w * y) | |
| w = p * (y > z) + (1 - p) * (y < z) | |
| return y - z | |
| def _rolling_ball_baseline(self, y: np.ndarray, radius: int) -> np.ndarray: | |
| """ | |
| Rolling ball baseline correction | |
| """ | |
| n = len(y) | |
| baseline = np.zeros_like(y) | |
| for i in range(n): | |
| start = max(0, i - radius) | |
| end = min(n, i + radius + 1) | |
| baseline[i] = np.min(y[start:end]) | |
| return y - baseline | |
| def normalization( | |
| self, | |
| wavenumbers: np.ndarray, | |
| intensities: np.ndarray, | |
| method: str = "vector", | |
| **kwargs, | |
| ) -> Tuple[np.ndarray, Dict]: | |
| """ | |
| Advanced normalization methods for spectroscopy data | |
| Args: | |
| wavenumbers: Wavenumber array | |
| intensities: Intensity array | |
| method: Normalization method ('vector', 'min_max', 'standard', 'area', 'peak') | |
| **kwargs: Method-specific parameters | |
| Returns: | |
| Normalized intensities and processing metadata | |
| """ | |
| normalized_intensities = intensities.copy() | |
| metadata = {"method": method, "original_std": np.std(intensities)} | |
| if method == "vector": | |
| norm = np.linalg.norm(intensities) | |
| normalized_intensities = intensities / norm if norm > 0 else intensities | |
| metadata["norm_value"] = norm | |
| elif method == "min_max": | |
| scaler = MinMaxScaler() | |
| normalized_intensities = scaler.fit_transform( | |
| intensities.reshape(-1, 1) | |
| ).flatten() | |
| metadata["min_value"] = scaler.data_min_[0] | |
| metadata["max_value"] = scaler.data_max_[0] | |
| elif method == "standard": | |
| scaler = StandardScaler() | |
| normalized_intensities = scaler.fit_transform( | |
| intensities.reshape(-1, 1) | |
| ).flatten() | |
| metadata["mean"] = scaler.mean_[0] if scaler.mean_ is not None else None | |
| metadata["std"] = scaler.scale_[0] if scaler.scale_ is not None else None | |
| elif method == "area": | |
| area = trapz(np.abs(intensities), wavenumbers) | |
| normalized_intensities = intensities / area if area > 0 else intensities | |
| metadata["area"] = area | |
| elif method == "peak": | |
| peak_idx = kwargs.get("peak_idx", np.argmax(np.abs(intensities))) | |
| peak_value = intensities[peak_idx] | |
| normalized_intensities = ( | |
| intensities / peak_value if peak_value != 0 else intensities | |
| ) | |
| metadata["peak_wavenumber"] = wavenumbers[peak_idx] | |
| metadata["peak_value"] = peak_value | |
| self.preprocessing_log.append(f"Normalization: {method}") | |
| metadata["normalized_std"] = np.std(normalized_intensities) | |
| return normalized_intensities, metadata | |
| def noise_reduction( | |
| self, | |
| wavenumbers: np.ndarray, | |
| intensities: np.ndarray, | |
| method: str = "savgol", | |
| **kwargs, | |
| ) -> Tuple[np.ndarray, Dict]: | |
| """ | |
| Advanced noise reduction techniques | |
| Args: | |
| wavenumbers: Wavenumber array | |
| intensities: Intensity array | |
| method: Denoising method ('savgol', 'wiener', 'median', 'gaussian') | |
| **kwargs: Method-specific parameters | |
| Returns: | |
| Reduced intensities and processing metadata | |
| """ | |
| denoised_intensities = intensities.copy() | |
| metadata = { | |
| "method": method, | |
| "original_noise_level": np.std(np.diff(intensities)), | |
| } | |
| if method == "savgol": | |
| window_length = kwargs.get("window_length", 11) | |
| polyorder = kwargs.get("polyorder", 3) | |
| if window_length % 2 == 0: | |
| window_length += 1 | |
| window_length = max(window_length, polyorder + 1) | |
| window_length = min(window_length, len(intensities) - 1) | |
| if window_length >= 3: | |
| denoised_intensities = signal.savgol_filter( | |
| intensities, window_length, polyorder | |
| ) | |
| metadata["window_length"] = window_length | |
| metadata["polyorder"] = polyorder | |
| elif method == "gaussian": | |
| sigma = kwargs.get("sigma", 1.0) # Default value for sigma | |
| denoised_intensities = gaussian_filter1d(intensities, sigma) | |
| metadata["sigma"] = sigma | |
| elif method == "median": | |
| kernel_size = kwargs.get("kernel_size", 5) | |
| denoised_intensities = signal.medfilt(intensities, kernel_size) | |
| metadata["kernel_size"] = kernel_size | |
| elif method == "wiener": | |
| noise_power = kwargs.get("noise_power", None) | |
| denoised_intensities = signal.wiener(intensities, noise=noise_power) | |
| metadata["noise_power"] = noise_power | |
| self.preprocessing_log.append(f"Noise reduction: {method}") | |
| metadata["final_noise_level"] = np.std(np.diff(denoised_intensities)) | |
| return denoised_intensities, metadata | |
| def technique_specific_preprocessing( | |
| self, wavenumbers: np.ndarray, intensities: np.ndarray, technique: str | |
| ) -> tuple[np.ndarray, Dict]: | |
| """ | |
| Apply technique-specific preprocessing optimizations | |
| Args: | |
| wavenumbers: Wavenumber array | |
| intensities: Intensity array | |
| technique: Spectroscopy technique | |
| Returns: | |
| Processed intensities and metadata | |
| """ | |
| processed_intensities = intensities.copy() | |
| metadata = {"technique": technique, "optimizations_applied": []} | |
| if technique == SpectroscopyType.ATR_FTIR: | |
| processed_intensities = self._atr_correction(wavenumbers, intensities) | |
| metadata["optimizations_applied"].append("ATR_penetration_correction") | |
| elif technique == SpectroscopyType.RAMAN: | |
| processed_intensities = self._cosmic_ray_removal(intensities) | |
| metadata["optimizations_applied"].append("cosmic_ray_removal") | |
| processed_intensities = self._fluorescence_correction( | |
| wavenumbers, processed_intensities | |
| ) | |
| metadata["optimizations_applied"].append("fluorescence_correction") | |
| elif technique == SpectroscopyType.FTIR: | |
| processed_intensities = self._atmospheric_correction( | |
| wavenumbers, intensities | |
| ) | |
| metadata["optimizations_applied"].append("atmospheric_correction") | |
| self.preprocessing_log.append(f"Technique-specific preprocessing: {technique}") | |
| return processed_intensities, metadata | |
| def _atr_correction( | |
| self, wavenumbers: np.ndarray, intensities: np.ndarray | |
| ) -> np.ndarray: | |
| """ | |
| Apply ATR correction for wavelength-dependant penetration depth | |
| """ | |
| correction_factor = np.sqrt(wavenumbers / np.max(wavenumbers)) | |
| return intensities * correction_factor | |
| def _cosmic_ray_removal( | |
| self, intensities: np.ndarray, threshold: float = 3.0 | |
| ) -> np.ndarray: | |
| """ | |
| Remove cosmic ray spikes from Raman spectra | |
| """ | |
| diff = np.abs(np.diff(intensities, prepend=intensities[0])) | |
| mean_diff = np.mean(diff) | |
| std_diff = np.std(diff) | |
| spikes = diff > (mean_diff + threshold * std_diff) | |
| corrected = intensities.copy() | |
| for i in np.where(spikes)[0]: | |
| if i > 0 and i < len(corrected) - 1: | |
| corrected[i] = (corrected[i - 1] + corrected[i + 1]) / 2 | |
| return corrected | |
| def _fluorescence_correction( | |
| self, wavenumbers: np.ndarray, intensities: np.ndarray | |
| ) -> np.ndarray: | |
| """ | |
| Remove fluorescence from Raman spectra | |
| """ | |
| try: | |
| coeffs = np.polyfit(wavenumbers, intensities, deg=3) | |
| background = np.polyval(coeffs, wavenumbers) | |
| return intensities - background | |
| except np.linalg.LinAlgError: | |
| return intensities | |
| def _atmospheric_correction( | |
| self, wavenumbers: np.ndarray, intensities: np.ndarray | |
| ) -> np.ndarray: | |
| """ | |
| Correct for atmospheric CO2 and water vapor absorption | |
| """ | |
| corrected = intensities.copy() | |
| co2_mask = (wavenumbers >= 2350) & (wavenumbers <= 2380) | |
| if np.any(co2_mask): | |
| non_co2_idx = ~co2_mask | |
| if np.any(non_co2_idx): | |
| interp_func = interp1d( | |
| wavenumbers[non_co2_idx], | |
| corrected[non_co2_idx], | |
| kind="linear", | |
| bounds_error=False, | |
| fill_value="extrapolate", | |
| ) | |
| corrected[co2_mask] = interp_func(wavenumbers[co2_mask]) | |
| return corrected | |
| class MultiModalSpectroscopyEngine: | |
| """Engine for handling multi-modal spectrscopy data fusion.""" | |
| def __init__(self): | |
| self.preprocessor = AdvancedPreprocessor() | |
| self.registered_techniques = {} | |
| self.fusion_strategies = [ | |
| "concatenation", | |
| "weighted_average", | |
| "pca_fusion", | |
| "attention_fusion", | |
| ] | |
| def register_spectrum( | |
| self, | |
| wavenumbers: np.ndarray, | |
| intensities: np.ndarray, | |
| technique: str, | |
| metadata: Optional[Dict] = None, | |
| ) -> str: | |
| """ | |
| Register a spectrum for multi-modal analysis | |
| Args: | |
| wavenumbers: Wavenumber array | |
| intensities: Intensity array | |
| technique: Spectroscopy technique type | |
| metadata: Additional metadata for the spectrum | |
| Returns: | |
| Spectrum ID for tracking | |
| """ | |
| spectrum_id = f"{technique}_{len(self.registered_techniques)}" | |
| self.registered_techniques[spectrum_id] = { | |
| "wavenumbers": wavenumbers, | |
| "intensities": intensities, | |
| "technique": technique, | |
| "metadata": metadata or {}, | |
| "characteristics": SPECTRAL_CHARACTERISTICS.get(technique), | |
| } | |
| return spectrum_id | |
| def preprocess_spectrum( | |
| self, spectrum_id: str, preprocessing_config: Optional[Dict] = None | |
| ) -> Dict: | |
| """ | |
| Apply comprehensive preprocessing to a registered spectrum | |
| Args: | |
| spectrum_id: ID of registered spectrum | |
| preprocessing_config: Configuration for preprocessing steps | |
| Returns: | |
| Processing results and metadata | |
| """ | |
| if spectrum_id not in self.registered_techniques: | |
| raise ValueError(f"Spectrum with ID {spectrum_id} not found.") | |
| spectrum_data = self.registered_techniques[spectrum_id] | |
| wavenumbers = spectrum_data["wavenumbers"] | |
| intensities = spectrum_data["intensities"] | |
| technique = spectrum_data["technique"] | |
| config = preprocessing_config or {} | |
| processed_intensities = intensities.copy() | |
| processing_metadata = {"steps_applied": [], "step_metadata": {}} | |
| if config.get("baseline_correction", True): | |
| method = config.get("baseline_method", "airpls") | |
| processed_intensities, baseline_metadata = ( | |
| self.preprocessor.baseline_correction( | |
| wavenumbers, processed_intensities, method=method | |
| ) | |
| ) | |
| processing_metadata["steps_applied"].append("baseline_correction") | |
| processing_metadata["step_metadata"][ | |
| "baseline_correction" | |
| ] = baseline_metadata | |
| processed_intensities, technique_meta = ( | |
| self.preprocessor.technique_specific_preprocessing( | |
| wavenumbers, processed_intensities, technique | |
| ) | |
| ) | |
| processing_metadata["steps_applied"].append("technique_specific") | |
| processing_metadata["step_metadata"]["technique_specific"] = technique_meta | |
| if config.get("noise_reduction", True): | |
| method = config.get("noise_method", "savgol") | |
| processed_intensities, noise_meta = self.preprocessor.noise_reduction( | |
| wavenumbers, processed_intensities, method=method | |
| ) | |
| processing_metadata["steps_applied"].append("noise_reduction") | |
| processing_metadata["step_metadata"]["noise_reduction"] = noise_meta | |
| if config.get("normalization", True): | |
| method = config.get("norm_method", "vector") | |
| processed_intensities, norm_meta = self.preprocessor.normalization( | |
| wavenumbers, processed_intensities, method=method | |
| ) | |
| processing_metadata["steps_applied"].append("normalization") | |
| processing_metadata["step_metadata"]["normalization"] = norm_meta | |
| self.registered_techniques[spectrum_id][ | |
| "processed_intensities" | |
| ] = processed_intensities | |
| self.registered_techniques[spectrum_id][ | |
| "processing_metadata" | |
| ] = processing_metadata | |
| return { | |
| "spectrum_id": spectrum_id, | |
| "processed_intensities": processed_intensities, | |
| "processing_metadata": processing_metadata, | |
| "quality_score": self._calculate_quality_score( | |
| wavenumbers, processed_intensities | |
| ), | |
| } | |
| def fuse_spectra( | |
| self, | |
| spectrum_ids: List[str], | |
| fusion_strategy: str = "concatenation", | |
| target_wavenumber_range: Optional[Tuple[float, float]] = None, | |
| ) -> Dict: | |
| """Fuse multiple spectra using specified strategy | |
| Args: | |
| spectrum_ids: List of spectrum IDs to fuse | |
| fusion_strategy: Fusion strategy ('concatenation', 'weighted_average', etc.) | |
| target_wavenumber_range: Common wavenumber for fusion | |
| Returns: | |
| Fused spectrum data and processing metadata | |
| """ | |
| if not all(sid in self.registered_techniques for sid in spectrum_ids): | |
| raise ValueError("Some spectrum IDs not found") | |
| spectra_data = [self.registered_techniques[sid] for sid in spectrum_ids] | |
| if fusion_strategy == "concatenation": | |
| return self._concatenation_fusion(spectra_data, target_wavenumber_range) | |
| elif fusion_strategy == "weighted_average": | |
| return self._weighted_average_fusion(spectra_data, target_wavenumber_range) | |
| elif fusion_strategy == "pca_fusion": | |
| return self._pca_fusion(spectra_data, target_wavenumber_range) | |
| elif fusion_strategy == "attention_fusion": | |
| return self._attention_fusion(spectra_data, target_wavenumber_range) | |
| else: | |
| raise ValueError( | |
| f"Unknown or unsupported fusion strategy: {fusion_strategy}" | |
| ) | |
| def _interpolate_to_common_grid( | |
| self, | |
| spectra_data: List[Dict], | |
| target_range: Tuple[float, float], | |
| num_points: int = 1000, | |
| ) -> Tuple[np.ndarray, List[np.ndarray]]: | |
| """Interpolate all spectra to a common wavenumber grid""" | |
| common_wavenumbers = np.linspace(target_range[0], target_range[1], num_points) | |
| interpolated_intensities_list = [] | |
| for spectrum in spectra_data: | |
| wavenumbers = spectrum["wavenumbers"] | |
| intensities = spectrum.get("processed_intensities", spectrum["intensities"]) | |
| valid_range = (wavenumbers.min(), wavenumbers.max()) | |
| mask = (common_wavenumbers >= valid_range[0]) & ( | |
| common_wavenumbers <= valid_range[1] | |
| ) | |
| interp_intensities = np.zeros_like(common_wavenumbers) | |
| if np.any(mask): | |
| interp_func = interp1d( | |
| wavenumbers, | |
| intensities, | |
| kind="linear", | |
| bounds_error=False, | |
| fill_value=0, | |
| ) | |
| interp_intensities[mask] = interp_func(common_wavenumbers[mask]) | |
| interpolated_intensities_list.append(interp_intensities) | |
| return common_wavenumbers, interpolated_intensities_list | |
| def _concatenation_fusion( | |
| self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]] | |
| ) -> Dict: | |
| """Simple concatenation of spectra""" | |
| if target_range is None: | |
| min_wn = max(s["wavenumbers"].min() for s in spectra_data) | |
| max_wn = min(s["wavenumbers"].max() for s in spectra_data) | |
| target_range = (min_wn, max_wn) | |
| common_wn, interpolated_intensities = self._interpolate_to_common_grid( | |
| spectra_data, target_range | |
| ) | |
| fused_intensities = np.concatenate(interpolated_intensities) | |
| fused_wavenumbers = np.tile(common_wn, len(spectra_data)) | |
| return { | |
| "wavenumbers": fused_wavenumbers, | |
| "intensities": fused_intensities, | |
| "fusion_strategy": "concatenation", | |
| "source_techniques": [s["technique"] for s in spectra_data], | |
| "common_range": target_range, | |
| } | |
| def _weighted_average_fusion( | |
| self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]] | |
| ) -> Dict: | |
| """Weighted average fusion based on data quality""" | |
| if target_range is None: | |
| min_wn = max(s["wavenumbers"].min() for s in spectra_data) | |
| max_wn = min(s["wavenumbers"].max() for s in spectra_data) | |
| target_range = (min_wn, max_wn) | |
| common_wn, interpolated_intensities = self._interpolate_to_common_grid( | |
| spectra_data, target_range | |
| ) | |
| weights = [] | |
| for i, spectrum in enumerate(spectra_data): | |
| quality_score = self._calculate_quality_score( | |
| common_wn, interpolated_intensities[i] | |
| ) | |
| weights.append(quality_score) | |
| weights = np.array(weights) | |
| weights_sum = np.sum(weights) | |
| weights = ( | |
| weights / weights_sum | |
| if weights_sum > 0 | |
| else np.full_like(weights, 1.0 / len(weights)) | |
| ) | |
| fused_intensities = np.zeros_like(common_wn) | |
| for i, intensities in enumerate(interpolated_intensities): | |
| fused_intensities += weights[i] * intensities | |
| return { | |
| "wavenumbers": common_wn, | |
| "intensities": fused_intensities, | |
| "fusion_strategy": "weighted_average", | |
| "weights": weights.tolist(), | |
| "source_techniques": [s["technique"] for s in spectra_data], | |
| "common_range": target_range, | |
| } | |
| def _pca_fusion( | |
| self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]] | |
| ) -> Dict: | |
| """PCA-based fusion to extract common features""" | |
| if target_range is None: | |
| min_wn = max(s["wavenumbers"].min() for s in spectra_data) | |
| max_wn = min(s["wavenumbers"].max() for s in spectra_data) | |
| target_range = (min_wn, max_wn) | |
| common_wn, interpolated_intensities = self._interpolate_to_common_grid( | |
| spectra_data, target_range | |
| ) | |
| spectra_matrix = np.vstack(interpolated_intensities) | |
| n_components = min(len(spectra_data), 3) | |
| pca = PCA(n_components=n_components) | |
| pca.fit(spectra_matrix.T) # Fit on features (wavenumbers) | |
| fused_intensities = np.dot(pca.explained_variance_ratio_, pca.components_) | |
| return { | |
| "wavenumbers": common_wn, | |
| "intensities": fused_intensities, | |
| "fusion_strategy": "pca_fusion", | |
| "explained_variance_ratio": pca.explained_variance_ratio_.tolist(), | |
| "n_components": n_components, | |
| "source_techniques": [s["technique"] for s in spectra_data], | |
| "common_range": target_range, | |
| } | |
| def _attention_fusion( | |
| self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]] | |
| ) -> Dict: | |
| """Attention-based fusion using a simple neural attention-like mechanism""" | |
| if target_range is None: | |
| min_wn = max(s["wavenumbers"].min() for s in spectra_data) | |
| max_wn = min(s["wavenumbers"].max() for s in spectra_data) | |
| target_range = (min_wn, max_wn) | |
| common_wn, interpolated_intensities = self._interpolate_to_common_grid( | |
| spectra_data, target_range | |
| ) | |
| attention_scores = [] | |
| for intensities in interpolated_intensities: | |
| variance = np.var(intensities) | |
| quality = self._calculate_quality_score(common_wn, intensities) | |
| attention_scores.append(variance * quality) | |
| attention_scores = np.array(attention_scores) | |
| exp_scores = np.exp( | |
| attention_scores - np.max(attention_scores) | |
| ) # Softmax for stability | |
| attention_weights = exp_scores / np.sum(exp_scores) | |
| fused_intensities = np.zeros_like(common_wn) | |
| for i, intensities in enumerate(interpolated_intensities): | |
| fused_intensities += attention_weights[i] * intensities | |
| return { | |
| "wavenumbers": common_wn, | |
| "intensities": fused_intensities, | |
| "fusion_strategy": "attention_fusion", | |
| "attention_weights": attention_weights.tolist(), | |
| "source_techniques": [s["technique"] for s in spectra_data], | |
| "common_range": target_range, | |
| } | |
| def _calculate_quality_score( | |
| self, wavenumbers: np.ndarray, intensities: np.ndarray | |
| ) -> float: | |
| """Calculate spectral quality score based on signal-to-noise ratio and other metrics""" | |
| try: | |
| signal_power = np.var(intensities) | |
| if len(intensities) < 2: | |
| return 0.0 | |
| noise_power = np.var(np.diff(intensities)) | |
| snr = signal_power / noise_power if noise_power > 0 else 1e6 | |
| peaks, properties = find_peaks( | |
| intensities, prominence=0.1 * np.std(intensities) | |
| ) | |
| peak_prominence = ( | |
| np.mean(properties["prominences"]) if len(peaks) > 0 else 0 | |
| ) | |
| baseline_stability = 1.0 / ( | |
| 1.0 + np.std(intensities[:10]) + np.std(intensities[-10:]) | |
| ) | |
| quality_score = ( | |
| np.log10(max(snr, 1)) * 0.5 | |
| + peak_prominence * 0.3 | |
| + baseline_stability * 0.2 | |
| ) | |
| return max(0, min(1, quality_score)) | |
| except Exception: | |
| return 0.5 | |
| def get_technique_recommendations(self, sample_type: str) -> List[Dict]: | |
| """ | |
| Recommend optimal spectroscopy techniques for a given sample type | |
| Args: | |
| sample_type: Type of sample (e.g., 'solid_polymer', 'liquid_polymer', 'thin_film') | |
| Returns: | |
| List of recommended techniques with rationale | |
| """ | |
| recommendations = [] | |
| if sample_type in ["solid_polymer", "polymer_pellets", "polymer_film"]: | |
| recommendations.extend( | |
| [ | |
| { | |
| "technique": SpectroscopyType.ATR_FTIR, | |
| "priority": "high", | |
| "rationale": "Minimal sample preparation, direct solid contact analysis", | |
| "characteristics": SPECTRAL_CHARACTERISTICS[ | |
| SpectroscopyType.ATR_FTIR | |
| ], | |
| }, | |
| { | |
| "technique": SpectroscopyType.RAMAN, | |
| "priority": "medium", | |
| "rationale": "Complementary vibrational information, non-destructive", | |
| "characteristics": SPECTRAL_CHARACTERISTICS[ | |
| SpectroscopyType.RAMAN | |
| ], | |
| }, | |
| ] | |
| ) | |
| elif sample_type in ["liquid_polymer", "polymer_solution"]: | |
| recommendations.extend( | |
| [ | |
| { | |
| "technique": SpectroscopyType.FTIR, | |
| "priority": "high", | |
| "rationale": "Versatile for liquid samples, wide spectral range", | |
| "characteristics": SPECTRAL_CHARACTERISTICS[ | |
| SpectroscopyType.FTIR | |
| ], | |
| }, | |
| { | |
| "technique": SpectroscopyType.RAMAN, | |
| "priority": "high", | |
| "rationale": "Water compatible, molecular vibrations", | |
| "characteristics": SPECTRAL_CHARACTERISTICS[ | |
| SpectroscopyType.RAMAN | |
| ], | |
| }, | |
| ] | |
| ) | |
| elif sample_type in ["weathered_polymer", "aged_polymer"]: | |
| recommendations.extend( | |
| [ | |
| { | |
| "technique": SpectroscopyType.ATR_FTIR, | |
| "priority": "high", | |
| "rationale": "Surface analysis for weathering products", | |
| "characteristics": SPECTRAL_CHARACTERISTICS[ | |
| SpectroscopyType.ATR_FTIR | |
| ], | |
| }, | |
| { | |
| "technique": SpectroscopyType.FTIR, | |
| "priority": "medium", | |
| "rationale": "Bulk analysis for degradation assessment", | |
| "characteristics": SPECTRAL_CHARACTERISTICS[ | |
| SpectroscopyType.FTIR | |
| ], | |
| }, | |
| ] | |
| ) | |
| return recommendations | |
| "" | |