Spaces:
Running
FEAT(spectroscopy): Develop advanced multi-modal processing engine
Browse files- Implements a sophisticated framework for processing and fusing multi-modal spectroscopy data, including FTIR, ATR-FTIR, and Raman.
- Introduces the `AdvancedPreprocessor` class, which provides a comprehensive suite of tools for spectral data enhancement:
- **Baseline Correction:** Advanced algorithms including airPLS, ALS, polynomial fitting, and rolling ball methods. - **Normalization:** Multiple strategies such as vector, min-max, standard (Z-score), area, and peak normalization.
- **Denoising:** A range of noise reduction filters including Savitzky-Golay, Gaussian, median, and Wiener filters.
- **Technique-Specific Adjustments:** Includes specialized corrections for ATR, Raman (cosmic ray and fluorescence), and standard FTIR (atmospheric compensation). Features the `MultiModalSpectroscopyEngine` for integrated analysis:
- **Data Fusion:** Implements strategies for combining data from multiple spectral sources, including concatenation, weighted averaging, PCA-based fusion, and an attention mechanism.
- **Quality Assessment:** A spectral quality scoring system to evaluate signal-to-noise ratio, peak prominence, and baseline stability.
- **Automated Recommendations:** Provides intelligent recommendations for the most suitable spectroscopy techniques based on sample type.
- Defines clear data structures for spectroscopy types and their characteristics, ensuring a well-organized and extensible module.
- modules/advanced_spectroscopy.py +845 -0
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Advanced Spectroscopy Integration Module
|
2 |
+
Support dual FTIR + Raman spectroscopy with ATR-FTIR integration"""
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from scipy.integrate import trapz
|
6 |
+
from typing import Dict, List, Tuple, Optional, Any
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from scipy import signal
|
9 |
+
import scipy.sparse as sparse
|
10 |
+
from scipy.sparse.linalg import spsolve
|
11 |
+
from scipy.interpolate import interp1d
|
12 |
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
13 |
+
from sklearn.decomposition import PCA
|
14 |
+
from scipy.signal import find_peaks
|
15 |
+
from scipy.ndimage import gaussian_filter1d
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class SpectroscopyType:
|
20 |
+
"""Define spectroscopy types and their characteristics"""
|
21 |
+
|
22 |
+
FTIR = "FTIR"
|
23 |
+
ATR_FTIR = "ATR-FTIR"
|
24 |
+
RAMAN = "Raman"
|
25 |
+
TRANSMISSION_FTIR = "Transmission-FTIR"
|
26 |
+
REFLECTION_FTIR = "Reflection-FTIR"
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class SpectralCharacteristics:
|
31 |
+
"""Characteristics of different spectroscopy techniques"""
|
32 |
+
|
33 |
+
technique: str
|
34 |
+
wavenumber_range: Tuple[float, float] # cm-1
|
35 |
+
typical_resolution: float # cm-1
|
36 |
+
sample_requirements: str
|
37 |
+
penetration_depth: Optional[str] = None
|
38 |
+
advantages: Optional[List[str]] = None
|
39 |
+
limitations: Optional[List[str]] = None
|
40 |
+
|
41 |
+
|
42 |
+
# Define characteristics for each technique
|
43 |
+
SPECTRAL_CHARACTERISTICS = {
|
44 |
+
SpectroscopyType.FTIR: SpectralCharacteristics(
|
45 |
+
technique="FTIR",
|
46 |
+
wavenumber_range=(400.0, 4000.0),
|
47 |
+
typical_resolution=4.0,
|
48 |
+
sample_requirements="Various (solid, liquid, gas)",
|
49 |
+
penetration_depth="Variable",
|
50 |
+
advantages=["High spectral resolution", "Wide range", "Quantitative"],
|
51 |
+
limitations=["Water interference", "Sample preparation"],
|
52 |
+
),
|
53 |
+
SpectroscopyType.ATR_FTIR: SpectralCharacteristics(
|
54 |
+
technique="ATR-FTIR",
|
55 |
+
wavenumber_range=(600.0, 4000.0),
|
56 |
+
typical_resolution=4.0,
|
57 |
+
sample_requirements="Direct solid contact",
|
58 |
+
penetration_depth="0.5-2 μm",
|
59 |
+
advantages=["Minimal sample prep", "Solid samples", "Quick analysis"],
|
60 |
+
limitations=["Surface analysis only", "Pressure sensitive"],
|
61 |
+
),
|
62 |
+
SpectroscopyType.RAMAN: SpectralCharacteristics(
|
63 |
+
technique="Raman",
|
64 |
+
wavenumber_range=(200, 3500),
|
65 |
+
typical_resolution=1.0,
|
66 |
+
sample_requirements="Various (solid, liquid)",
|
67 |
+
penetration_depth="Variable",
|
68 |
+
advantages=["Water compatible", "Non-destructive", "Molecular vibrations"],
|
69 |
+
limitations=["Fluorescence interference", "Weak signals"],
|
70 |
+
),
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
class AdvancedPreprocessor:
|
75 |
+
"""Advanced preprocessing pipeline for multi-modal spectroscopy data"""
|
76 |
+
|
77 |
+
def __init__(self):
|
78 |
+
self.techniques_applied = []
|
79 |
+
self.preprocessing_log = []
|
80 |
+
|
81 |
+
def baseline_correction(
|
82 |
+
self,
|
83 |
+
wavenumber: np.ndarray,
|
84 |
+
intensities: np.ndarray,
|
85 |
+
method: str = "airpls",
|
86 |
+
**kwargs,
|
87 |
+
) -> Tuple[np.ndarray, Dict]:
|
88 |
+
"""
|
89 |
+
Advanced baseline correction methods
|
90 |
+
|
91 |
+
Args:
|
92 |
+
wavenumber: Wavenumber array
|
93 |
+
intensities: Intensity array
|
94 |
+
method: Baseline correction method ('airpls', 'als', 'polynomial', 'rolling_ball')
|
95 |
+
**kwargs: Method-specific parameters
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
Corrected intensities and processing metadata
|
99 |
+
"""
|
100 |
+
metadata = {
|
101 |
+
"method": method,
|
102 |
+
"original_range": (intensities.min(), intensities.max()),
|
103 |
+
}
|
104 |
+
corrected_intensities = intensities.copy()
|
105 |
+
|
106 |
+
if method == "airpls":
|
107 |
+
corrected_intensities = self._airpls_baseline(intensities, **kwargs)
|
108 |
+
elif method == "als":
|
109 |
+
corrected_intensities = self._als_baseline(intensities, **kwargs)
|
110 |
+
elif method == "polynomial":
|
111 |
+
degree = kwargs.get("degree", 3)
|
112 |
+
coeffs = np.polyfit(wavenumber, intensities, degree)
|
113 |
+
baseline = np.polyval(coeffs, wavenumber)
|
114 |
+
corrected_intensities = intensities - baseline
|
115 |
+
metadata["polynomial_degree"] = degree
|
116 |
+
elif method == "rolling_ball":
|
117 |
+
ball_radius = kwargs.get("radius", 50)
|
118 |
+
corrected_intensities = self._rolling_ball_baseline(
|
119 |
+
intensities, ball_radius
|
120 |
+
)
|
121 |
+
metadata["ball_radius"] = ball_radius
|
122 |
+
|
123 |
+
self.preprocessing_log.append(f"Baseline correction: {method}")
|
124 |
+
metadata["corrected_range"] = (
|
125 |
+
corrected_intensities.min(),
|
126 |
+
corrected_intensities.max(),
|
127 |
+
)
|
128 |
+
|
129 |
+
return corrected_intensities, metadata
|
130 |
+
|
131 |
+
def _airpls_baseline(
|
132 |
+
self, y: np.ndarray, lambda_: float = 1e4, itermax: int = 15
|
133 |
+
) -> np.ndarray:
|
134 |
+
"""
|
135 |
+
Adaptive Iteratively Reweighted Penalized Least Squares baseline correction
|
136 |
+
"""
|
137 |
+
m = len(y)
|
138 |
+
D = sparse.diags([1, -2, 1], offsets=[0, -1, -2], shape=(m, m - 2))
|
139 |
+
D = lambda_ * D.dot(D.transpose())
|
140 |
+
w = np.ones(m)
|
141 |
+
|
142 |
+
for i in range(itermax):
|
143 |
+
W = sparse.spdiags(w, 0, m, m)
|
144 |
+
Z = W + D
|
145 |
+
z = spsolve(Z, w * y)
|
146 |
+
d = y - z
|
147 |
+
dn = d[d < 0]
|
148 |
+
|
149 |
+
m_dn = np.mean(dn) if len(dn) > 0 else 0
|
150 |
+
s_dn = np.std(dn) if len(dn) > 1 else 1
|
151 |
+
|
152 |
+
wt = 1.0 / (1 + np.exp(2 * (d - (2 * s_dn - m_dn)) / s_dn))
|
153 |
+
|
154 |
+
if np.linalg.norm(w - wt) / np.linalg.norm(w) < 1e-9:
|
155 |
+
break
|
156 |
+
w = wt
|
157 |
+
|
158 |
+
z = spsolve(sparse.spdiags(w, 0, m, m) + D, w * y)
|
159 |
+
return y - z
|
160 |
+
|
161 |
+
def _als_baseline(
|
162 |
+
self, y: np.ndarray, lambda_: float = 1e4, p: float = 0.001
|
163 |
+
) -> np.ndarray:
|
164 |
+
"""
|
165 |
+
Asymmetric Least Squares baseline correction
|
166 |
+
"""
|
167 |
+
m = len(y)
|
168 |
+
D = sparse.diags([1, -2, 1], [0, -1, -2], shape=(m, m - 2))
|
169 |
+
D_t_D = D.dot(D.transpose())
|
170 |
+
w = np.ones(m)
|
171 |
+
|
172 |
+
for _ in range(10):
|
173 |
+
W = sparse.spdiags(w, 0, m, m)
|
174 |
+
Z = W + lambda_ * D_t_D
|
175 |
+
z = spsolve(Z, w * y)
|
176 |
+
w = p * (y > z) + (1 - p) * (y < z)
|
177 |
+
|
178 |
+
return y - z
|
179 |
+
|
180 |
+
def _rolling_ball_baseline(self, y: np.ndarray, radius: int) -> np.ndarray:
|
181 |
+
"""
|
182 |
+
Rolling ball baseline correction
|
183 |
+
"""
|
184 |
+
n = len(y)
|
185 |
+
baseline = np.zeros_like(y)
|
186 |
+
|
187 |
+
for i in range(n):
|
188 |
+
start = max(0, i - radius)
|
189 |
+
end = min(n, i + radius + 1)
|
190 |
+
baseline[i] = np.min(y[start:end])
|
191 |
+
|
192 |
+
return y - baseline
|
193 |
+
|
194 |
+
def normalization(
|
195 |
+
self,
|
196 |
+
wavenumbers: np.ndarray,
|
197 |
+
intensities: np.ndarray,
|
198 |
+
method: str = "vector",
|
199 |
+
**kwargs,
|
200 |
+
) -> Tuple[np.ndarray, Dict]:
|
201 |
+
"""
|
202 |
+
Advanced normalization methods for spectroscopy data
|
203 |
+
|
204 |
+
Args:
|
205 |
+
wavenumbers: Wavenumber array
|
206 |
+
intensities: Intensity array
|
207 |
+
method: Normalization method ('vector', 'min_max', 'standard', 'area', 'peak')
|
208 |
+
**kwargs: Method-specific parameters
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
Normalized intensities and processing metadata
|
212 |
+
"""
|
213 |
+
normalized_intensities = intensities.copy()
|
214 |
+
metadata = {"method": method, "original_std": np.std(intensities)}
|
215 |
+
|
216 |
+
if method == "vector":
|
217 |
+
norm = np.linalg.norm(intensities)
|
218 |
+
normalized_intensities = intensities / norm if norm > 0 else intensities
|
219 |
+
metadata["norm_value"] = norm
|
220 |
+
elif method == "min_max":
|
221 |
+
scaler = MinMaxScaler()
|
222 |
+
normalized_intensities = scaler.fit_transform(
|
223 |
+
intensities.reshape(-1, 1)
|
224 |
+
).flatten()
|
225 |
+
metadata["min_value"] = scaler.data_min_[0]
|
226 |
+
metadata["max_value"] = scaler.data_max_[0]
|
227 |
+
elif method == "standard":
|
228 |
+
scaler = StandardScaler()
|
229 |
+
normalized_intensities = scaler.fit_transform(
|
230 |
+
intensities.reshape(-1, 1)
|
231 |
+
).flatten()
|
232 |
+
metadata["mean"] = scaler.mean_[0] if scaler.mean_ is not None else None
|
233 |
+
metadata["std"] = scaler.scale_[0] if scaler.scale_ is not None else None
|
234 |
+
elif method == "area":
|
235 |
+
area = trapz(np.abs(intensities), wavenumbers)
|
236 |
+
normalized_intensities = intensities / area if area > 0 else intensities
|
237 |
+
metadata["area"] = area
|
238 |
+
elif method == "peak":
|
239 |
+
peak_idx = kwargs.get("peak_idx", np.argmax(np.abs(intensities)))
|
240 |
+
peak_value = intensities[peak_idx]
|
241 |
+
normalized_intensities = (
|
242 |
+
intensities / peak_value if peak_value != 0 else intensities
|
243 |
+
)
|
244 |
+
metadata["peak_wavenumber"] = wavenumbers[peak_idx]
|
245 |
+
metadata["peak_value"] = peak_value
|
246 |
+
|
247 |
+
self.preprocessing_log.append(f"Normalization: {method}")
|
248 |
+
metadata["normalized_std"] = np.std(normalized_intensities)
|
249 |
+
|
250 |
+
return normalized_intensities, metadata
|
251 |
+
|
252 |
+
def noise_reduction(
|
253 |
+
self,
|
254 |
+
wavenumbers: np.ndarray,
|
255 |
+
intensities: np.ndarray,
|
256 |
+
method: str = "savgol",
|
257 |
+
**kwargs,
|
258 |
+
) -> Tuple[np.ndarray, Dict]:
|
259 |
+
"""
|
260 |
+
Advanced noise reduction techniques
|
261 |
+
|
262 |
+
Args:
|
263 |
+
wavenumbers: Wavenumber array
|
264 |
+
intensities: Intensity array
|
265 |
+
method: Denoising method ('savgol', 'wiener', 'median', 'gaussian')
|
266 |
+
**kwargs: Method-specific parameters
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
Reduced intensities and processing metadata
|
270 |
+
"""
|
271 |
+
denoised_intensities = intensities.copy()
|
272 |
+
metadata = {
|
273 |
+
"method": method,
|
274 |
+
"original_noise_level": np.std(np.diff(intensities)),
|
275 |
+
}
|
276 |
+
|
277 |
+
if method == "savgol":
|
278 |
+
window_length = kwargs.get("window_length", 11)
|
279 |
+
polyorder = kwargs.get("polyorder", 3)
|
280 |
+
|
281 |
+
if window_length % 2 == 0:
|
282 |
+
window_length += 1
|
283 |
+
window_length = max(window_length, polyorder + 1)
|
284 |
+
window_length = min(window_length, len(intensities) - 1)
|
285 |
+
|
286 |
+
if window_length >= 3:
|
287 |
+
denoised_intensities = signal.savgol_filter(
|
288 |
+
intensities, window_length, polyorder
|
289 |
+
)
|
290 |
+
metadata["window_length"] = window_length
|
291 |
+
metadata["polyorder"] = polyorder
|
292 |
+
elif method == "gaussian":
|
293 |
+
sigma = kwargs.get("sigma", 1.0) # Default value for sigma
|
294 |
+
denoised_intensities = gaussian_filter1d(intensities, sigma)
|
295 |
+
metadata["sigma"] = sigma
|
296 |
+
elif method == "median":
|
297 |
+
kernel_size = kwargs.get("kernel_size", 5)
|
298 |
+
denoised_intensities = signal.medfilt(intensities, kernel_size)
|
299 |
+
metadata["kernel_size"] = kernel_size
|
300 |
+
elif method == "wiener":
|
301 |
+
noise_power = kwargs.get("noise_power", None)
|
302 |
+
denoised_intensities = signal.wiener(intensities, noise=noise_power)
|
303 |
+
metadata["noise_power"] = noise_power
|
304 |
+
|
305 |
+
self.preprocessing_log.append(f"Noise reduction: {method}")
|
306 |
+
metadata["final_noise_level"] = np.std(np.diff(denoised_intensities))
|
307 |
+
|
308 |
+
return denoised_intensities, metadata
|
309 |
+
|
310 |
+
def technique_specific_preprocessing(
|
311 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray, technique: str
|
312 |
+
) -> tuple[np.ndarray, Dict]:
|
313 |
+
"""
|
314 |
+
Apply technique-specific preprocessing optimizations
|
315 |
+
|
316 |
+
Args:
|
317 |
+
wavenumbers: Wavenumber array
|
318 |
+
intensities: Intensity array
|
319 |
+
technique: Spectroscopy technique
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
Processed intensities and metadata
|
323 |
+
"""
|
324 |
+
processed_intensities = intensities.copy()
|
325 |
+
metadata = {"technique": technique, "optimizations_applied": []}
|
326 |
+
|
327 |
+
if technique == SpectroscopyType.ATR_FTIR:
|
328 |
+
processed_intensities = self._atr_correction(wavenumbers, intensities)
|
329 |
+
metadata["optimizations_applied"].append("ATR_penetration_correction")
|
330 |
+
elif technique == SpectroscopyType.RAMAN:
|
331 |
+
processed_intensities = self._cosmic_ray_removal(intensities)
|
332 |
+
metadata["optimizations_applied"].append("cosmic_ray_removal")
|
333 |
+
processed_intensities = self._fluorescence_correction(
|
334 |
+
wavenumbers, processed_intensities
|
335 |
+
)
|
336 |
+
metadata["optimizations_applied"].append("fluorescence_correction")
|
337 |
+
elif technique == SpectroscopyType.FTIR:
|
338 |
+
processed_intensities = self._atmospheric_correction(
|
339 |
+
wavenumbers, intensities
|
340 |
+
)
|
341 |
+
metadata["optimizations_applied"].append("atmospheric_correction")
|
342 |
+
|
343 |
+
self.preprocessing_log.append(f"Technique-specific preprocessing: {technique}")
|
344 |
+
return processed_intensities, metadata
|
345 |
+
|
346 |
+
def _atr_correction(
|
347 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray
|
348 |
+
) -> np.ndarray:
|
349 |
+
"""
|
350 |
+
Apply ATR correction for wavelength-dependant penetration depth
|
351 |
+
"""
|
352 |
+
correction_factor = np.sqrt(wavenumbers / np.max(wavenumbers))
|
353 |
+
return intensities * correction_factor
|
354 |
+
|
355 |
+
def _cosmic_ray_removal(
|
356 |
+
self, intensities: np.ndarray, threshold: float = 3.0
|
357 |
+
) -> np.ndarray:
|
358 |
+
"""
|
359 |
+
Remove cosmic ray spikes from Raman spectra
|
360 |
+
"""
|
361 |
+
diff = np.abs(np.diff(intensities, prepend=intensities[0]))
|
362 |
+
mean_diff = np.mean(diff)
|
363 |
+
std_diff = np.std(diff)
|
364 |
+
|
365 |
+
spikes = diff > (mean_diff + threshold * std_diff)
|
366 |
+
corrected = intensities.copy()
|
367 |
+
|
368 |
+
for i in np.where(spikes)[0]:
|
369 |
+
if i > 0 and i < len(corrected) - 1:
|
370 |
+
corrected[i] = (corrected[i - 1] + corrected[i + 1]) / 2
|
371 |
+
|
372 |
+
return corrected
|
373 |
+
|
374 |
+
def _fluorescence_correction(
|
375 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray
|
376 |
+
) -> np.ndarray:
|
377 |
+
"""
|
378 |
+
Remove fluorescence from Raman spectra
|
379 |
+
"""
|
380 |
+
try:
|
381 |
+
coeffs = np.polyfit(wavenumbers, intensities, deg=3)
|
382 |
+
background = np.polyval(coeffs, wavenumbers)
|
383 |
+
return intensities - background
|
384 |
+
except np.linalg.LinAlgError:
|
385 |
+
return intensities
|
386 |
+
|
387 |
+
def _atmospheric_correction(
|
388 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray
|
389 |
+
) -> np.ndarray:
|
390 |
+
"""
|
391 |
+
Correct for atmospheric CO2 and water vapor absorption
|
392 |
+
"""
|
393 |
+
corrected = intensities.copy()
|
394 |
+
co2_mask = (wavenumbers >= 2350) & (wavenumbers <= 2380)
|
395 |
+
if np.any(co2_mask):
|
396 |
+
non_co2_idx = ~co2_mask
|
397 |
+
if np.any(non_co2_idx):
|
398 |
+
interp_func = interp1d(
|
399 |
+
wavenumbers[non_co2_idx],
|
400 |
+
corrected[non_co2_idx],
|
401 |
+
kind="linear",
|
402 |
+
bounds_error=False,
|
403 |
+
fill_value="extrapolate",
|
404 |
+
)
|
405 |
+
corrected[co2_mask] = interp_func(wavenumbers[co2_mask])
|
406 |
+
|
407 |
+
return corrected
|
408 |
+
|
409 |
+
|
410 |
+
class MultiModalSpectroscopyEngine:
|
411 |
+
"""Engine for handling multi-modal spectrscopy data fusion."""
|
412 |
+
|
413 |
+
def __init__(self):
|
414 |
+
self.preprocessor = AdvancedPreprocessor()
|
415 |
+
self.registered_techniques = {}
|
416 |
+
self.fusion_strategies = [
|
417 |
+
"concatenation",
|
418 |
+
"weighted_average",
|
419 |
+
"pca_fusion",
|
420 |
+
"attention_fusion",
|
421 |
+
]
|
422 |
+
|
423 |
+
def register_spectrum(
|
424 |
+
self,
|
425 |
+
wavenumbers: np.ndarray,
|
426 |
+
intensities: np.ndarray,
|
427 |
+
technique: str,
|
428 |
+
metadata: Optional[Dict] = None,
|
429 |
+
) -> str:
|
430 |
+
"""
|
431 |
+
Register a spectrum for multi-modal analysis
|
432 |
+
|
433 |
+
Args:
|
434 |
+
wavenumbers: Wavenumber array
|
435 |
+
intensities: Intensity array
|
436 |
+
technique: Spectroscopy technique type
|
437 |
+
metadata: Additional metadata for the spectrum
|
438 |
+
|
439 |
+
Returns:
|
440 |
+
Spectrum ID for tracking
|
441 |
+
"""
|
442 |
+
spectrum_id = f"{technique}_{len(self.registered_techniques)}"
|
443 |
+
|
444 |
+
self.registered_techniques[spectrum_id] = {
|
445 |
+
"wavenumbers": wavenumbers,
|
446 |
+
"intensities": intensities,
|
447 |
+
"technique": technique,
|
448 |
+
"metadata": metadata or {},
|
449 |
+
"characteristics": SPECTRAL_CHARACTERISTICS.get(technique),
|
450 |
+
}
|
451 |
+
|
452 |
+
return spectrum_id
|
453 |
+
|
454 |
+
def preprocess_spectrum(
|
455 |
+
self, spectrum_id: str, preprocessing_config: Optional[Dict] = None
|
456 |
+
) -> Dict:
|
457 |
+
"""
|
458 |
+
Apply comprehensive preprocessing to a registered spectrum
|
459 |
+
|
460 |
+
Args:
|
461 |
+
spectrum_id: ID of registered spectrum
|
462 |
+
preprocessing_config: Configuration for preprocessing steps
|
463 |
+
|
464 |
+
Returns:
|
465 |
+
Processing results and metadata
|
466 |
+
"""
|
467 |
+
if spectrum_id not in self.registered_techniques:
|
468 |
+
raise ValueError(f"Spectrum with ID {spectrum_id} not found.")
|
469 |
+
|
470 |
+
spectrum_data = self.registered_techniques[spectrum_id]
|
471 |
+
wavenumbers = spectrum_data["wavenumbers"]
|
472 |
+
intensities = spectrum_data["intensities"]
|
473 |
+
technique = spectrum_data["technique"]
|
474 |
+
|
475 |
+
config = preprocessing_config or {}
|
476 |
+
|
477 |
+
processed_intensities = intensities.copy()
|
478 |
+
processing_metadata = {"steps_applied": [], "step_metadata": {}}
|
479 |
+
|
480 |
+
if config.get("baseline_correction", True):
|
481 |
+
method = config.get("baseline_method", "airpls")
|
482 |
+
processed_intensities, baseline_metadata = (
|
483 |
+
self.preprocessor.baseline_correction(
|
484 |
+
wavenumbers, processed_intensities, method=method
|
485 |
+
)
|
486 |
+
)
|
487 |
+
processing_metadata["steps_applied"].append("baseline_correction")
|
488 |
+
processing_metadata["step_metadata"][
|
489 |
+
"baseline_correction"
|
490 |
+
] = baseline_metadata
|
491 |
+
|
492 |
+
processed_intensities, technique_meta = (
|
493 |
+
self.preprocessor.technique_specific_preprocessing(
|
494 |
+
wavenumbers, processed_intensities, technique
|
495 |
+
)
|
496 |
+
)
|
497 |
+
processing_metadata["steps_applied"].append("technique_specific")
|
498 |
+
processing_metadata["step_metadata"]["technique_specific"] = technique_meta
|
499 |
+
|
500 |
+
if config.get("noise_reduction", True):
|
501 |
+
method = config.get("noise_method", "savgol")
|
502 |
+
processed_intensities, noise_meta = self.preprocessor.noise_reduction(
|
503 |
+
wavenumbers, processed_intensities, method=method
|
504 |
+
)
|
505 |
+
processing_metadata["steps_applied"].append("noise_reduction")
|
506 |
+
processing_metadata["step_metadata"]["noise_reduction"] = noise_meta
|
507 |
+
|
508 |
+
if config.get("normalization", True):
|
509 |
+
method = config.get("norm_method", "vector")
|
510 |
+
processed_intensities, norm_meta = self.preprocessor.normalization(
|
511 |
+
wavenumbers, processed_intensities, method=method
|
512 |
+
)
|
513 |
+
processing_metadata["steps_applied"].append("normalization")
|
514 |
+
processing_metadata["step_metadata"]["normalization"] = norm_meta
|
515 |
+
|
516 |
+
self.registered_techniques[spectrum_id][
|
517 |
+
"processed_intensities"
|
518 |
+
] = processed_intensities
|
519 |
+
self.registered_techniques[spectrum_id][
|
520 |
+
"processing_metadata"
|
521 |
+
] = processing_metadata
|
522 |
+
|
523 |
+
return {
|
524 |
+
"spectrum_id": spectrum_id,
|
525 |
+
"processed_intensities": processed_intensities,
|
526 |
+
"processing_metadata": processing_metadata,
|
527 |
+
"quality_score": self._calculate_quality_score(
|
528 |
+
wavenumbers, processed_intensities
|
529 |
+
),
|
530 |
+
}
|
531 |
+
|
532 |
+
def fuse_spectra(
|
533 |
+
self,
|
534 |
+
spectrum_ids: List[str],
|
535 |
+
fusion_strategy: str = "concatenation",
|
536 |
+
target_wavenumber_range: Optional[Tuple[float, float]] = None,
|
537 |
+
) -> Dict:
|
538 |
+
"""Fuse multiple spectra using specified strategy
|
539 |
+
|
540 |
+
Args:
|
541 |
+
spectrum_ids: List of spectrum IDs to fuse
|
542 |
+
fusion_strategy: Fusion strategy ('concatenation', 'weighted_average', etc.)
|
543 |
+
target_wavenumber_range: Common wavenumber for fusion
|
544 |
+
|
545 |
+
Returns:
|
546 |
+
Fused spectrum data and processing metadata
|
547 |
+
"""
|
548 |
+
if not all(sid in self.registered_techniques for sid in spectrum_ids):
|
549 |
+
raise ValueError("Some spectrum IDs not found")
|
550 |
+
|
551 |
+
spectra_data = [self.registered_techniques[sid] for sid in spectrum_ids]
|
552 |
+
|
553 |
+
if fusion_strategy == "concatenation":
|
554 |
+
return self._concatenation_fusion(spectra_data, target_wavenumber_range)
|
555 |
+
elif fusion_strategy == "weighted_average":
|
556 |
+
return self._weighted_average_fusion(spectra_data, target_wavenumber_range)
|
557 |
+
elif fusion_strategy == "pca_fusion":
|
558 |
+
return self._pca_fusion(spectra_data, target_wavenumber_range)
|
559 |
+
elif fusion_strategy == "attention_fusion":
|
560 |
+
return self._attention_fusion(spectra_data, target_wavenumber_range)
|
561 |
+
else:
|
562 |
+
raise ValueError(
|
563 |
+
f"Unknown or unsupported fusion strategy: {fusion_strategy}"
|
564 |
+
)
|
565 |
+
|
566 |
+
def _interpolate_to_common_grid(
|
567 |
+
self,
|
568 |
+
spectra_data: List[Dict],
|
569 |
+
target_range: Tuple[float, float],
|
570 |
+
num_points: int = 1000,
|
571 |
+
) -> Tuple[np.ndarray, List[np.ndarray]]:
|
572 |
+
"""Interpolate all spectra to a common wavenumber grid"""
|
573 |
+
common_wavenumbers = np.linspace(target_range[0], target_range[1], num_points)
|
574 |
+
interpolated_intensities_list = []
|
575 |
+
|
576 |
+
for spectrum in spectra_data:
|
577 |
+
wavenumbers = spectrum["wavenumbers"]
|
578 |
+
intensities = spectrum.get("processed_intensities", spectrum["intensities"])
|
579 |
+
|
580 |
+
valid_range = (wavenumbers.min(), wavenumbers.max())
|
581 |
+
mask = (common_wavenumbers >= valid_range[0]) & (
|
582 |
+
common_wavenumbers <= valid_range[1]
|
583 |
+
)
|
584 |
+
|
585 |
+
interp_intensities = np.zeros_like(common_wavenumbers)
|
586 |
+
if np.any(mask):
|
587 |
+
interp_func = interp1d(
|
588 |
+
wavenumbers,
|
589 |
+
intensities,
|
590 |
+
kind="linear",
|
591 |
+
bounds_error=False,
|
592 |
+
fill_value=0,
|
593 |
+
)
|
594 |
+
interp_intensities[mask] = interp_func(common_wavenumbers[mask])
|
595 |
+
|
596 |
+
interpolated_intensities_list.append(interp_intensities)
|
597 |
+
|
598 |
+
return common_wavenumbers, interpolated_intensities_list
|
599 |
+
|
600 |
+
def _concatenation_fusion(
|
601 |
+
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
|
602 |
+
) -> Dict:
|
603 |
+
"""Simple concatenation of spectra"""
|
604 |
+
if target_range is None:
|
605 |
+
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
|
606 |
+
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
|
607 |
+
target_range = (min_wn, max_wn)
|
608 |
+
|
609 |
+
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
|
610 |
+
spectra_data, target_range
|
611 |
+
)
|
612 |
+
|
613 |
+
fused_intensities = np.concatenate(interpolated_intensities)
|
614 |
+
fused_wavenumbers = np.tile(common_wn, len(spectra_data))
|
615 |
+
|
616 |
+
return {
|
617 |
+
"wavenumbers": fused_wavenumbers,
|
618 |
+
"intensities": fused_intensities,
|
619 |
+
"fusion_strategy": "concatenation",
|
620 |
+
"source_techniques": [s["technique"] for s in spectra_data],
|
621 |
+
"common_range": target_range,
|
622 |
+
}
|
623 |
+
|
624 |
+
def _weighted_average_fusion(
|
625 |
+
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
|
626 |
+
) -> Dict:
|
627 |
+
"""Weighted average fusion based on data quality"""
|
628 |
+
if target_range is None:
|
629 |
+
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
|
630 |
+
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
|
631 |
+
target_range = (min_wn, max_wn)
|
632 |
+
|
633 |
+
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
|
634 |
+
spectra_data, target_range
|
635 |
+
)
|
636 |
+
|
637 |
+
weights = []
|
638 |
+
for i, spectrum in enumerate(spectra_data):
|
639 |
+
quality_score = self._calculate_quality_score(
|
640 |
+
common_wn, interpolated_intensities[i]
|
641 |
+
)
|
642 |
+
weights.append(quality_score)
|
643 |
+
|
644 |
+
weights = np.array(weights)
|
645 |
+
weights_sum = np.sum(weights)
|
646 |
+
weights = (
|
647 |
+
weights / weights_sum
|
648 |
+
if weights_sum > 0
|
649 |
+
else np.full_like(weights, 1.0 / len(weights))
|
650 |
+
)
|
651 |
+
|
652 |
+
fused_intensities = np.zeros_like(common_wn)
|
653 |
+
for i, intensities in enumerate(interpolated_intensities):
|
654 |
+
fused_intensities += weights[i] * intensities
|
655 |
+
|
656 |
+
return {
|
657 |
+
"wavenumbers": common_wn,
|
658 |
+
"intensities": fused_intensities,
|
659 |
+
"fusion_strategy": "weighted_average",
|
660 |
+
"weights": weights.tolist(),
|
661 |
+
"source_techniques": [s["technique"] for s in spectra_data],
|
662 |
+
"common_range": target_range,
|
663 |
+
}
|
664 |
+
|
665 |
+
def _pca_fusion(
|
666 |
+
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
|
667 |
+
) -> Dict:
|
668 |
+
"""PCA-based fusion to extract common features"""
|
669 |
+
if target_range is None:
|
670 |
+
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
|
671 |
+
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
|
672 |
+
target_range = (min_wn, max_wn)
|
673 |
+
|
674 |
+
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
|
675 |
+
spectra_data, target_range
|
676 |
+
)
|
677 |
+
|
678 |
+
spectra_matrix = np.vstack(interpolated_intensities)
|
679 |
+
|
680 |
+
n_components = min(len(spectra_data), 3)
|
681 |
+
pca = PCA(n_components=n_components)
|
682 |
+
pca.fit(spectra_matrix.T) # Fit on features (wavenumbers)
|
683 |
+
|
684 |
+
fused_intensities = np.dot(pca.explained_variance_ratio_, pca.components_)
|
685 |
+
|
686 |
+
return {
|
687 |
+
"wavenumbers": common_wn,
|
688 |
+
"intensities": fused_intensities,
|
689 |
+
"fusion_strategy": "pca_fusion",
|
690 |
+
"explained_variance_ratio": pca.explained_variance_ratio_.tolist(),
|
691 |
+
"n_components": n_components,
|
692 |
+
"source_techniques": [s["technique"] for s in spectra_data],
|
693 |
+
"common_range": target_range,
|
694 |
+
}
|
695 |
+
|
696 |
+
def _attention_fusion(
|
697 |
+
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
|
698 |
+
) -> Dict:
|
699 |
+
"""Attention-based fusion using a simple neural attention-like mechanism"""
|
700 |
+
if target_range is None:
|
701 |
+
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
|
702 |
+
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
|
703 |
+
target_range = (min_wn, max_wn)
|
704 |
+
|
705 |
+
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
|
706 |
+
spectra_data, target_range
|
707 |
+
)
|
708 |
+
|
709 |
+
attention_scores = []
|
710 |
+
for intensities in interpolated_intensities:
|
711 |
+
variance = np.var(intensities)
|
712 |
+
quality = self._calculate_quality_score(common_wn, intensities)
|
713 |
+
attention_scores.append(variance * quality)
|
714 |
+
|
715 |
+
attention_scores = np.array(attention_scores)
|
716 |
+
exp_scores = np.exp(
|
717 |
+
attention_scores - np.max(attention_scores)
|
718 |
+
) # Softmax for stability
|
719 |
+
attention_weights = exp_scores / np.sum(exp_scores)
|
720 |
+
|
721 |
+
fused_intensities = np.zeros_like(common_wn)
|
722 |
+
for i, intensities in enumerate(interpolated_intensities):
|
723 |
+
fused_intensities += attention_weights[i] * intensities
|
724 |
+
|
725 |
+
return {
|
726 |
+
"wavenumbers": common_wn,
|
727 |
+
"intensities": fused_intensities,
|
728 |
+
"fusion_strategy": "attention_fusion",
|
729 |
+
"attention_weights": attention_weights.tolist(),
|
730 |
+
"source_techniques": [s["technique"] for s in spectra_data],
|
731 |
+
"common_range": target_range,
|
732 |
+
}
|
733 |
+
|
734 |
+
def _calculate_quality_score(
|
735 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray
|
736 |
+
) -> float:
|
737 |
+
"""Calculate spectral quality score based on signal-to-noise ratio and other metrics"""
|
738 |
+
try:
|
739 |
+
signal_power = np.var(intensities)
|
740 |
+
if len(intensities) < 2:
|
741 |
+
return 0.0
|
742 |
+
noise_power = np.var(np.diff(intensities))
|
743 |
+
snr = signal_power / noise_power if noise_power > 0 else 1e6
|
744 |
+
|
745 |
+
peaks, properties = find_peaks(
|
746 |
+
intensities, prominence=0.1 * np.std(intensities)
|
747 |
+
)
|
748 |
+
peak_prominence = (
|
749 |
+
np.mean(properties["prominences"]) if len(peaks) > 0 else 0
|
750 |
+
)
|
751 |
+
|
752 |
+
baseline_stability = 1.0 / (
|
753 |
+
1.0 + np.std(intensities[:10]) + np.std(intensities[-10:])
|
754 |
+
)
|
755 |
+
|
756 |
+
quality_score = (
|
757 |
+
np.log10(max(snr, 1)) * 0.5
|
758 |
+
+ peak_prominence * 0.3
|
759 |
+
+ baseline_stability * 0.2
|
760 |
+
)
|
761 |
+
|
762 |
+
return max(0, min(1, quality_score))
|
763 |
+
except Exception:
|
764 |
+
return 0.5
|
765 |
+
|
766 |
+
def get_technique_recommendations(self, sample_type: str) -> List[Dict]:
|
767 |
+
"""
|
768 |
+
Recommend optimal spectroscopy techniques for a given sample type
|
769 |
+
|
770 |
+
Args:
|
771 |
+
sample_type: Type of sample (e.g., 'solid_polymer', 'liquid_polymer', 'thin_film')
|
772 |
+
|
773 |
+
Returns:
|
774 |
+
List of recommended techniques with rationale
|
775 |
+
"""
|
776 |
+
recommendations = []
|
777 |
+
|
778 |
+
if sample_type in ["solid_polymer", "polymer_pellets", "polymer_film"]:
|
779 |
+
recommendations.extend(
|
780 |
+
[
|
781 |
+
{
|
782 |
+
"technique": SpectroscopyType.ATR_FTIR,
|
783 |
+
"priority": "high",
|
784 |
+
"rationale": "Minimal sample preparation, direct solid contact analysis",
|
785 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
786 |
+
SpectroscopyType.ATR_FTIR
|
787 |
+
],
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"technique": SpectroscopyType.RAMAN,
|
791 |
+
"priority": "medium",
|
792 |
+
"rationale": "Complementary vibrational information, non-destructive",
|
793 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
794 |
+
SpectroscopyType.RAMAN
|
795 |
+
],
|
796 |
+
},
|
797 |
+
]
|
798 |
+
)
|
799 |
+
elif sample_type in ["liquid_polymer", "polymer_solution"]:
|
800 |
+
recommendations.extend(
|
801 |
+
[
|
802 |
+
{
|
803 |
+
"technique": SpectroscopyType.FTIR,
|
804 |
+
"priority": "high",
|
805 |
+
"rationale": "Versatile for liquid samples, wide spectral range",
|
806 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
807 |
+
SpectroscopyType.FTIR
|
808 |
+
],
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"technique": SpectroscopyType.RAMAN,
|
812 |
+
"priority": "high",
|
813 |
+
"rationale": "Water compatible, molecular vibrations",
|
814 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
815 |
+
SpectroscopyType.RAMAN
|
816 |
+
],
|
817 |
+
},
|
818 |
+
]
|
819 |
+
)
|
820 |
+
elif sample_type in ["weathered_polymer", "aged_polymer"]:
|
821 |
+
recommendations.extend(
|
822 |
+
[
|
823 |
+
{
|
824 |
+
"technique": SpectroscopyType.ATR_FTIR,
|
825 |
+
"priority": "high",
|
826 |
+
"rationale": "Surface analysis for weathering products",
|
827 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
828 |
+
SpectroscopyType.ATR_FTIR
|
829 |
+
],
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"technique": SpectroscopyType.FTIR,
|
833 |
+
"priority": "medium",
|
834 |
+
"rationale": "Bulk analysis for degradation assessment",
|
835 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
836 |
+
SpectroscopyType.FTIR
|
837 |
+
],
|
838 |
+
},
|
839 |
+
]
|
840 |
+
)
|
841 |
+
|
842 |
+
return recommendations
|
843 |
+
|
844 |
+
|
845 |
+
""
|