polymer-aging-ml / docs /BACKEND_MIGRATION_LOG.md
devjas1
Initial migration from original polymer_project
e484a46
|
raw
history blame
1.75 kB

BACKEND_MIGRATION_LOG.md

πŸ“Œ Overview

This document tracks the migration of the inference logic from a monolithic Streamlit app to a modular, testable FastAPI backend for the Polymer AI Aging Prediction System


βœ… Completed Work

1. Initial Setup

  • Installed fastapi, uvicorn, and set up basic FastAPI app in main.py.

2. Modular Inference Utilities

  • Moved load_model() and run_inference() into backend/inference_utils.py.
  • Separated model configuration for Figure2CNN and ResNet1D.
  • Applied proper preprocessing (resampling, normalization) inside run_inference().

3. API Endpoint

  • /infer route accepts JSON payloads with model_name and spectrum.
  • Returns: full prediction dictionary with class index, logits, and label map.

4. Validation + Testing

  • Tested manually in Python REPL.

  • Tested via curl:

    curl -X POST  -H "Content-Type: application/json" -d @backend/test_payload.json
    

πŸ›  Fixes & Breakpoints Resolved

  • βœ… Fixed incorrect model path ("models/" β†’ "outputs/")
  • βœ… Corrected unpacking bug in main.py β†’ now returns full result dict
  • βœ… Replaced invalid tolist() call on string-typed logits
  • βœ… Manually verified output from CLI and curl

πŸ§ͺ Next Focus: Robustness Testing

  • Invalid model_name handling
  • Short/empty spectrum validation
  • ResNet model loading test
  • JSON schema validation for input
  • Unit tests via pytest or integration test runner

πŸ”„ Future Enhancements

  • Modular model registry (for adding more model classes easily)
  • Add OpenAPI schema and example payloads for documentation
  • Enable batch inference or upload support