Spaces:
Running
Running
File size: 21,459 Bytes
a427341 a64b261 a427341 a64b261 345529d a427341 a64b261 f7cba14 a427341 2c41fa3 65e5904 a427341 8c75a82 a427341 8c75a82 a427341 345529d a427341 2c41fa3 a427341 8c75a82 a427341 2c41fa3 a427341 8c75a82 a427341 8c75a82 a427341 2c41fa3 a427341 8c75a82 a427341 2c41fa3 a427341 2c41fa3 a427341 2c41fa3 a427341 2c41fa3 a64b261 f7cba14 a64b261 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 a427341 2c41fa3 8c75a82 a427341 65e5904 a427341 2c41fa3 a427341 2c41fa3 8c75a82 a427341 2c41fa3 a427341 65e5904 7184c06 65e5904 a427341 2c41fa3 65e5904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
"""Session results management for multi-file inference.
Handles in-memory results table and export functionality.
Supports multi-model comparison and statistical analysis."""
import streamlit as st
import pandas as pd
import json
from datetime import datetime
from typing import Dict, List, Any, Optional, Tuple
import numpy as np
from pathlib import Path
import io
from collections import defaultdict
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
def local_css(file_name):
with open(file_name, encoding="utf-8") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
class ResultsManager:
"""Manages session-wide results for multi-file inference"""
RESULTS_KEY = "inference_results"
@staticmethod
def init_results_table() -> None:
"""Initialize the results table in session state"""
if ResultsManager.RESULTS_KEY not in st.session_state:
st.session_state[ResultsManager.RESULTS_KEY] = []
@staticmethod
def add_results(
filename: str,
model_name: str,
prediction: int,
predicted_class: str,
confidence: float,
logits: List[float],
ground_truth: Optional[int] = None,
processing_time: float = 0.0,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
"""Add a single inference result to the results table"""
ResultsManager.init_results_table()
result = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"filename": filename,
"model": model_name,
"prediction": prediction,
"predicted_class": predicted_class,
"confidence": confidence,
"logits": logits,
"ground_truth": ground_truth,
"processing_time": processing_time,
"metadata": metadata or {},
}
st.session_state[ResultsManager.RESULTS_KEY].append(result)
@staticmethod
def get_results() -> List[Dict[str, Any]]:
"""Get all inference results"""
ResultsManager.init_results_table()
return st.session_state[ResultsManager.RESULTS_KEY]
@staticmethod
def get_results_count() -> int:
"""Get the number of stored results"""
return len(ResultsManager.get_results())
@staticmethod
def clear_results() -> None:
"""Clear all stored results"""
st.session_state[ResultsManager.RESULTS_KEY] = []
@staticmethod
def get_spectrum_data_for_file(filename: str) -> Optional[Dict[str, np.ndarray]]:
"""
Retrieves raw and resampled spectrum data for a given filename.
Returns None if no data is found for the filename or if data is incomplete.
"""
results = ResultsManager.get_results()
for r in results:
if r["filename"] == filename:
# Ensure all required keys are present and not None
if all(
r.get(k) is not None
for k in ["x_raw", "y_raw", "x_resampled", "y_resampled"]
):
return {
"x_raw": r["x_raw"],
"y_raw": r["y_raw"],
"x_resampled": r["x_resampled"],
"y_resampled": r["y_resampled"],
}
else:
# If the metadata exists but spectrum data is missing for this entry,
# it means it was processed before we started storing spectrums.
return None
return None # Return None if filename not found
@staticmethod
def get_results_dataframe() -> pd.DataFrame:
"""Convert results to pandas DataFrame for display and export"""
results = ResultsManager.get_results()
if not results:
return pd.DataFrame()
# ===Flatten the results for DataFrame===
df_data = []
for result in results:
row = {
"Timestamp": result["timestamp"],
"Filename": result["filename"],
"Model": result["model"],
"Prediction": result["prediction"],
"Predicted Class": result["predicted_class"],
"Confidence": f"{result['confidence']:.3f}",
"Stable Logit": (
f"{result['logits'][0]:.3f}" if len(result["logits"]) > 0 else "N/A"
),
"Weathered Logit": (
f"{result['logits'][1]:.3f}" if len(result["logits"]) > 1 else "N/A"
),
"Ground Truth": (
result["ground_truth"]
if result["ground_truth"] is not None
else "Unknown"
),
"Processing Time (s)": f"{result['processing_time']:.3f}",
}
df_data.append(row)
return pd.DataFrame(df_data)
@staticmethod
def export_to_csv() -> bytes:
"""Export results to CSV format"""
df = ResultsManager.get_results_dataframe()
if df.empty:
return b""
# ===Use StringIO to create CSV in memory===
csv_buffer = io.StringIO()
df.to_csv(csv_buffer, index=False)
return csv_buffer.getvalue().encode("utf-8")
@staticmethod
def export_to_json() -> str:
"""Export results to JSON format"""
results = ResultsManager.get_results()
return json.dumps(results, indent=2, default=str)
@staticmethod
def get_summary_stats() -> Dict[str, Any]:
"""Get summary statistics for the results"""
results = ResultsManager.get_results()
if not results:
return {}
df = ResultsManager.get_results_dataframe()
stats = {
"total_files": len(results),
"models_used": list(set(r["model"] for r in results)),
"stable_predictions": sum(1 for r in results if r["prediction"] == 0),
"weathered_predictions": sum(1 for r in results if r["prediction"] == 1),
"avg_confidence": sum(r["confidence"] for r in results) / len(results),
"avg_processing_time": sum(r["processing_time"] for r in results)
/ len(results),
"files_with_ground_truth": sum(
1 for r in results if r["ground_truth"] is not None
),
}
# ===Calculate accuracy if ground truth is available===
correct_predictions = sum(
1
for r in results
if r["ground_truth"] is not None and r["prediction"] == r["ground_truth"]
)
total_with_gt = stats["files_with_ground_truth"]
if total_with_gt > 0:
stats["accuracy"] = correct_predictions / total_with_gt
else:
stats["accuracy"] = None
return stats
@staticmethod
def remove_result_by_filename(filename: str) -> bool:
"""Remove a result by filename. Returns True if removed, False if not found."""
results = ResultsManager.get_results()
original_length = len(results)
# Filter out results with matching filename
st.session_state[ResultsManager.RESULTS_KEY] = [
r for r in results if r["filename"] != filename
]
return len(st.session_state[ResultsManager.RESULTS_KEY]) < original_length
@staticmethod
def add_multi_model_results(
filename: str,
model_results: Dict[str, Dict[str, Any]],
ground_truth: Optional[int] = None,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
"""
Add results from multiple models for the same file.
Args:
filename: Name of the processed file
model_results: Dict with model_name -> result dict
ground_truth: True label if available
metadata: Additional file metadata
"""
for model_name, result in model_results.items():
ResultsManager.add_results(
filename=filename,
model_name=model_name,
prediction=result["prediction"],
predicted_class=result["predicted_class"],
confidence=result["confidence"],
logits=result["logits"],
ground_truth=ground_truth,
processing_time=result.get("processing_time", 0.0),
metadata=metadata,
)
@staticmethod
def get_comparison_stats() -> Dict[str, Any]:
"""Get comparative statistics across all models."""
results = ResultsManager.get_results()
if not results:
return {}
# Group results by model
model_stats = defaultdict(list)
for result in results:
model_stats[result["model"]].append(result)
comparison = {}
for model_name, model_results in model_stats.items():
stats = {
"total_predictions": len(model_results),
"avg_confidence": np.mean([r["confidence"] for r in model_results]),
"std_confidence": np.std([r["confidence"] for r in model_results]),
"avg_processing_time": np.mean(
[r["processing_time"] for r in model_results]
),
"stable_predictions": sum(
1 for r in model_results if r["prediction"] == 0
),
"weathered_predictions": sum(
1 for r in model_results if r["prediction"] == 1
),
}
# Calculate accuracy if ground truth available
with_gt = [r for r in model_results if r["ground_truth"] is not None]
if with_gt:
correct = sum(
1 for r in with_gt if r["prediction"] == r["ground_truth"]
)
stats["accuracy"] = correct / len(with_gt)
stats["num_with_ground_truth"] = len(with_gt)
else:
stats["accuracy"] = None
stats["num_with_ground_truth"] = 0
comparison[model_name] = stats
return comparison
@staticmethod
def get_agreement_matrix() -> pd.DataFrame:
"""
Calculate agreement matrix between models for the same files.
Returns:
DataFrame showing model agreement rates
"""
results = ResultsManager.get_results()
if not results:
return pd.DataFrame()
# Group by filename
file_results = defaultdict(dict)
for result in results:
file_results[result["filename"]][result["model"]] = result["prediction"]
# Get unique models
all_models = list(set(r["model"] for r in results))
if len(all_models) < 2:
return pd.DataFrame()
# Calculate agreement matrix
agreement_matrix = np.zeros((len(all_models), len(all_models)))
for i, model1 in enumerate(all_models):
for j, model2 in enumerate(all_models):
if i == j:
agreement_matrix[i, j] = 1.0 # Perfect self-agreement
else:
agreements = 0
comparisons = 0
for filename, predictions in file_results.items():
if model1 in predictions and model2 in predictions:
comparisons += 1
if predictions[model1] == predictions[model2]:
agreements += 1
if comparisons > 0:
agreement_matrix[i, j] = agreements / comparisons
return pd.DataFrame(agreement_matrix, index=all_models, columns=all_models)
def create_comparison_visualization() -> Figure:
"""Create visualization comparing model performance."""
comparison_stats = ResultsManager.get_comparison_stats()
if not comparison_stats:
return None
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8))
models = list(comparison_stats.keys())
# 1. Average Confidence
confidences = [comparison_stats[m]["avg_confidence"] for m in models]
conf_stds = [comparison_stats[m]["std_confidence"] for m in models]
ax1.bar(models, confidences, yerr=conf_stds, capsize=5)
ax1.set_title("Average Confidence by Model")
ax1.set_ylabel("Confidence")
ax1.tick_params(axis="x", rotation=45)
# 2. Processing Time
proc_times = [comparison_stats[m]["avg_processing_time"] for m in models]
ax2.bar(models, proc_times)
ax2.set_title("Average Processing Time")
ax2.set_ylabel("Time (seconds)")
ax2.tick_params(axis="x", rotation=45)
# 3. Prediction Distribution
stable_counts = [comparison_stats[m]["stable_predictions"] for m in models]
weathered_counts = [
comparison_stats[m]["weathered_predictions"] for m in models
]
x = np.arange(len(models))
width = 0.35
ax3.bar(x - width / 2, stable_counts, width, label="Stable", alpha=0.8)
ax3.bar(x + width / 2, weathered_counts, width, label="Weathered", alpha=0.8)
ax3.set_title("Prediction Distribution")
ax3.set_ylabel("Count")
ax3.set_xticks(x)
ax3.set_xticklabels(models, rotation=45)
ax3.legend()
# 4. Accuracy (if available)
accuracies = []
models_with_acc = []
for model in models:
if comparison_stats[model]["accuracy"] is not None:
accuracies.append(comparison_stats[model]["accuracy"])
models_with_acc.append(model)
if accuracies:
ax4.bar(models_with_acc, accuracies)
ax4.set_title("Model Accuracy (where ground truth available)")
ax4.set_ylabel("Accuracy")
ax4.set_ylim(0, 1)
ax4.tick_params(axis="x", rotation=45)
else:
ax4.text(
0.5,
0.5,
"No ground truth\navailable",
ha="center",
va="center",
transform=ax4.transAxes,
)
ax4.set_title("Model Accuracy")
plt.tight_layout()
return fig
@staticmethod
def export_comparison_report() -> str:
"""Export comprehensive comparison report as JSON."""
comparison_stats = ResultsManager.get_comparison_stats()
agreement_matrix = ResultsManager.get_agreement_matrix()
report = {
"timestamp": datetime.now().isoformat(),
"model_comparison": comparison_stats,
"agreement_matrix": (
agreement_matrix.to_dict() if not agreement_matrix.empty else {}
),
"summary": {
"total_models_compared": len(comparison_stats),
"total_files_processed": len(
set(r["filename"] for r in ResultsManager.get_results())
),
"overall_statistics": ResultsManager.get_summary_stats(),
},
}
return json.dumps(report, indent=2, default=str)
@staticmethod
# ==UTILITY FUNCTIONS==
def init_session_state():
"""Keep a persistent session state"""
defaults = {
"status_message": "Ready to analyze polymer spectra 🔬",
"status_type": "info",
"input_text": None,
"filename": None,
"input_source": None, # "upload", "batch" or "sample"
"sample_select": "-- Select Sample --",
"input_mode": "Upload File", # controls which pane is visible
"inference_run_once": False,
"x_raw": None,
"y_raw": None,
"y_resampled": None,
"log_messages": [],
"uploader_version": 0,
"current_upload_key": "upload_txt_0",
"active_tab": "Details",
"batch_mode": False,
}
# Init session state with defaults
for key, value in defaults.items():
if key not in st.session_state:
st.session_state[key] = value
@staticmethod
def reset_ephemeral_state():
"""Comprehensive reset for the entire app state."""
current_version = st.session_state.get("uploader_version", 0)
# Define keys that should NOT be cleared by a full reset
keep_keys = {"model_select", "input_mode"}
for k in list(st.session_state.keys()):
if k not in keep_keys:
st.session_state.pop(k, None)
st.session_state["status_message"] = "Ready to analyze polymer spectra"
st.session_state["status_type"] = "info"
st.session_state["batch_files"] = []
st.session_state["inference_run_once"] = True
st.session_state[""] = ""
# CRITICAL: Increment the preserved version and re-assign it
st.session_state["uploader_version"] = current_version + 1
st.session_state["current_upload_key"] = (
f"upload_txt_{st.session_state['uploader_version']}"
)
@staticmethod
def display_results_table() -> None:
"""Display the results table in Streamlit UI"""
df = ResultsManager.get_results_dataframe()
if df.empty:
st.info(
"No inference results yet. Upload files and run analysis to see results here."
)
return
local_css("static/style.css")
st.subheader(f"Inference Results ({len(df)} files)")
# ==Summary stats==
stats = ResultsManager.get_summary_stats()
if stats:
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Files", stats["total_files"])
with col2:
st.metric("Avg Confidence", f"{stats['avg_confidence']:.3f}")
with col3:
st.metric(
"Stable/Weathered",
f"{stats['stable_predictions']}/{stats['weathered_predictions']}",
)
with col4:
if stats["accuracy"] is not None:
st.metric("Accuracy", f"{stats['accuracy']:.3f}")
else:
st.metric("Accuracy", "N/A")
# ==Results Table==
st.dataframe(df, use_container_width=True)
with st.container(border=None, key="page-link-container"):
st.page_link(
"pages/3_Interactive_Dashboard.py",
label="Interactive Batch Analysis Dashboard",
help="Dive deeper into your batch results.",
use_container_width=False,
)
# ==Export Button==
with st.container(border=None, key="buttons-container"):
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
csv_data = ResultsManager.export_to_csv()
if csv_data:
with st.container(border=None, key="csv-button"):
st.download_button(
label="Download CSV",
data=csv_data,
file_name=f"polymer_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv",
help="Export Results to CSV",
use_container_width=True,
type="tertiary",
)
with col2:
json_data = ResultsManager.export_to_json()
if json_data:
with st.container(border=None, key="json-button"):
st.download_button(
label="Download JSON",
data=json_data,
file_name=f"polymer_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json",
help="Export Results to JSON",
type="tertiary",
use_container_width=True,
)
with col3:
with st.container(border=None, key="clearall-button"):
st.button(
label="Clear All Results",
help="Clear all stored results",
on_click=ResultsManager.reset_ephemeral_state,
use_container_width=True,
type="tertiary",
)
|