Spaces:
Sleeping
Sleeping
File size: 11,532 Bytes
73712cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
"""
Model performance optimization utilities.
Includes model quantization, pruning, and optimization techniques.
"""
import torch
import torch.nn as nn
import torch.nn.utils.prune as prune
from typing import Dict, Any, List, Optional, Tuple
import time
import numpy as np
from pathlib import Path
class ModelOptimizer:
"""Utility class for optimizing trained models."""
def __init__(self):
self.optimization_history = []
def quantize_model(
self, model: nn.Module, dtype: torch.dtype = torch.qint8
) -> nn.Module:
"""Apply dynamic quantization to reduce model size and inference time."""
# Prepare for quantization
model.eval()
# Apply dynamic quantization
quantized_model = torch.quantization.quantize_dynamic(
model, {nn.Linear, nn.Conv1d}, dtype=dtype # Layers to quantize
)
return quantized_model
def prune_model(
self, model: nn.Module, pruning_ratio: float = 0.2, structured: bool = False
) -> nn.Module:
"""Apply magnitude-based pruning to reduce model parameters."""
model_copy = type(model)(
model.input_length if hasattr(model, "input_length") else 500
)
model_copy.load_state_dict(model.state_dict())
# Collect modules to prune
modules_to_prune = []
for name, module in model_copy.named_modules():
if isinstance(module, (nn.Conv1d, nn.Linear)):
modules_to_prune.append((module, "weight"))
if structured:
# Structured pruning (entire channels/filters)
for module, param_name in modules_to_prune:
if isinstance(module, nn.Conv1d):
prune.ln_structured(
module, name=param_name, amount=pruning_ratio, n=2, dim=0
)
else:
prune.l1_unstructured(module, name=param_name, amount=pruning_ratio)
else:
# Unstructured pruning
prune.global_unstructured(
modules_to_prune,
pruning_method=prune.L1Unstructured,
amount=pruning_ratio,
)
# Make pruning permanent
for module, param_name in modules_to_prune:
prune.remove(module, param_name)
return model_copy
def optimize_for_inference(self, model: nn.Module) -> nn.Module:
"""Apply multiple optimizations for faster inference."""
model.eval()
# Fuse operations where possible
optimized_model = self._fuse_conv_bn(model)
# Apply quantization
optimized_model = self.quantize_model(optimized_model)
return optimized_model
def _fuse_conv_bn(self, model: nn.Module) -> nn.Module:
"""Fuse convolution and batch normalization layers."""
model_copy = type(model)(
model.input_length if hasattr(model, "input_length") else 500
)
model_copy.load_state_dict(model.state_dict())
# Simple fusion for sequential Conv1d + BatchNorm1d patterns
for name, module in model_copy.named_children():
if isinstance(module, nn.Sequential):
self._fuse_sequential_conv_bn(module)
return model_copy
def _fuse_sequential_conv_bn(self, sequential: nn.Sequential):
"""Fuse Conv1d + BatchNorm1d in sequential modules."""
layers = list(sequential.children())
i = 0
while i < len(layers) - 1:
if isinstance(layers[i], nn.Conv1d) and isinstance(
layers[i + 1], nn.BatchNorm1d
):
# Fuse the layers
if isinstance(layers[i], nn.Conv1d) and isinstance(
layers[i + 1], nn.BatchNorm1d
):
if isinstance(layers[i + 1], nn.BatchNorm1d):
if isinstance(layers[i], nn.Conv1d) and isinstance(
layers[i + 1], nn.BatchNorm1d
):
fused = self._fuse_conv_bn_layer(layers[i], layers[i + 1])
else:
fused = None
else:
fused = None
else:
fused = None
if fused:
# Replace in sequential
new_layers = layers[:i] + [fused] + layers[i + 2 :]
sequential = nn.Sequential(*new_layers)
layers = new_layers
i += 1
def _fuse_conv_bn_layer(self, conv: nn.Conv1d, bn: nn.BatchNorm1d) -> nn.Conv1d:
"""Fuse a single Conv1d and BatchNorm1d layer."""
# Create new conv layer
fused_conv = nn.Conv1d(
conv.in_channels,
conv.out_channels,
conv.kernel_size[0],
conv.stride[0] if isinstance(conv.stride, tuple) else conv.stride,
conv.padding[0] if isinstance(conv.padding, tuple) else conv.padding,
conv.dilation[0] if isinstance(conv.dilation, tuple) else conv.dilation,
conv.groups,
bias=True, # Always add bias after fusion
)
# Calculate fused parameters
w_conv = conv.weight.clone()
w_bn = bn.weight.clone()
b_bn = bn.bias.clone()
mean_bn = (
bn.running_mean.clone()
if bn.running_mean is not None
else torch.zeros_like(bn.weight)
)
var_bn = (
bn.running_var.clone()
if bn.running_var is not None
else torch.zeros_like(bn.weight)
)
eps = bn.eps
# Fuse weights
factor = w_bn / torch.sqrt(var_bn + eps)
fused_conv.weight.data = w_conv * factor.reshape(-1, 1, 1)
# Fuse bias
if conv.bias is not None:
b_conv = conv.bias.clone()
else:
b_conv = torch.zeros_like(b_bn)
fused_conv.bias.data = (b_conv - mean_bn) * factor + b_bn
return fused_conv
def benchmark_model(
self,
model: nn.Module,
input_shape: Tuple[int, ...] = (1, 1, 500),
num_runs: int = 100,
warmup_runs: int = 10,
) -> Dict[str, float]:
"""Benchmark model performance."""
model.eval()
# Create dummy input
dummy_input = torch.randn(input_shape)
# Warmup
with torch.no_grad():
for _ in range(warmup_runs):
_ = model(dummy_input)
# Benchmark
times = []
with torch.no_grad():
for _ in range(num_runs):
start_time = time.time()
_ = model(dummy_input)
end_time = time.time()
times.append(end_time - start_time)
# Calculate statistics
times = np.array(times)
# Count parameters
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# Calculate model size (approximate)
param_size = sum(p.numel() * p.element_size() for p in model.parameters())
buffer_size = sum(b.numel() * b.element_size() for b in model.buffers())
model_size_mb = (param_size + buffer_size) / (1024 * 1024)
return {
"mean_inference_time": float(np.mean(times)),
"std_inference_time": float(np.std(times)),
"min_inference_time": float(np.min(times)),
"max_inference_time": float(np.max(times)),
"fps": 1.0 / float(np.mean(times)),
"total_parameters": total_params,
"trainable_parameters": trainable_params,
"model_size_mb": model_size_mb,
}
def compare_optimizations(
self,
original_model: nn.Module,
optimizations: Optional[List[str]] = None,
input_shape: Tuple[int, ...] = (1, 1, 500),
) -> Dict[str, Dict[str, Any]]:
if optimizations is None:
optimizations = ["quantize", "prune", "full_optimize"]
results = {}
# Benchmark original model
results["original"] = self.benchmark_model(original_model, input_shape)
for opt in optimizations:
try:
if opt == "quantize":
optimized_model = self.quantize_model(original_model)
elif opt == "prune":
optimized_model = self.prune_model(
original_model, pruning_ratio=0.3
)
elif opt == "full_optimize":
optimized_model = self.optimize_for_inference(original_model)
else:
continue
# Benchmark optimized model
benchmark_results = self.benchmark_model(optimized_model, input_shape)
# Calculate improvements
speedup = (
results["original"]["mean_inference_time"]
/ benchmark_results["mean_inference_time"]
)
size_reduction = (
results["original"]["model_size_mb"]
- benchmark_results["model_size_mb"]
) / results["original"]["model_size_mb"]
param_reduction = (
results["original"]["total_parameters"]
- benchmark_results["total_parameters"]
) / results["original"]["total_parameters"]
benchmark_results.update(
{
"speedup": speedup,
"size_reduction_ratio": size_reduction,
"parameter_reduction_ratio": param_reduction,
}
)
results[opt] = benchmark_results
except (RuntimeError, ValueError, TypeError) as e:
results[opt] = {"error": str(e)}
return results
def suggest_optimizations(
self,
model: nn.Module,
target_speed: Optional[float] = None,
target_size: Optional[float] = None,
) -> List[str]:
"""Suggest optimization strategies based on requirements."""
suggestions = []
# Get baseline metrics
baseline = self.benchmark_model(model)
if target_speed and baseline["mean_inference_time"] > target_speed:
suggestions.append("Apply quantization for 2-4x speedup")
suggestions.append("Use pruning to reduce model size by 20-50%")
suggestions.append(
"Consider using EfficientSpectralCNN for real-time inference"
)
if target_size and baseline["model_size_mb"] > target_size:
suggestions.append("Apply magnitude-based pruning")
suggestions.append("Use quantization to reduce model size")
suggestions.append("Consider knowledge distillation to a smaller model")
# Model-specific suggestions
if baseline["total_parameters"] > 1000000:
suggestions.append(
"Model is large - consider using efficient architectures"
)
return suggestions
|