Spaces:
Running
Running
File size: 14,569 Bytes
05d496e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
"""Performance tracking and logging utilities for POLYMEROS platform."""
import time
import json
import sqlite3
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Any, Optional
import numpy as np
import matplotlib.pyplot as plt
import streamlit as st
from dataclasses import dataclass, asdict
from contextlib import contextmanager
@dataclass
class PerformanceMetrics:
"""Data class for performance metrics."""
model_name: str
prediction_time: float
preprocessing_time: float
total_time: float
memory_usage_mb: float
accuracy: Optional[float]
confidence: float
timestamp: str
input_size: int
modality: str
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
class PerformanceTracker:
"""Automatic performance tracking and logging system."""
def __init__(self, db_path: str = "outputs/performance_tracking.db"):
self.db_path = Path(db_path)
self.db_path.parent.mkdir(parents=True, exist_ok=True)
self._init_database()
def _init_database(self):
"""Initialize SQLite database for performance tracking."""
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
CREATE TABLE IF NOT EXISTS performance_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_name TEXT NOT NULL,
prediction_time REAL NOT NULL,
preprocessing_time REAL NOT NULL,
total_time REAL NOT NULL,
memory_usage_mb REAL,
accuracy REAL,
confidence REAL NOT NULL,
timestamp TEXT NOT NULL,
input_size INTEGER NOT NULL,
modality TEXT NOT NULL
)
"""
)
conn.commit()
def log_performance(self, metrics: PerformanceMetrics):
"""Log performance metrics to database."""
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
INSERT INTO performance_metrics
(model_name, prediction_time, preprocessing_time, total_time,
memory_usage_mb, accuracy, confidence, timestamp, input_size, modality)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
(
metrics.model_name,
metrics.prediction_time,
metrics.preprocessing_time,
metrics.total_time,
metrics.memory_usage_mb,
metrics.accuracy,
metrics.confidence,
metrics.timestamp,
metrics.input_size,
metrics.modality,
),
)
conn.commit()
@contextmanager
def track_inference(self, model_name: str, modality: str = "raman"):
"""Context manager for automatic performance tracking."""
start_time = time.time()
start_memory = self._get_memory_usage()
tracking_data = {
"model_name": model_name,
"modality": modality,
"start_time": start_time,
"start_memory": start_memory,
"preprocessing_time": 0.0,
}
try:
yield tracking_data
finally:
end_time = time.time()
end_memory = self._get_memory_usage()
total_time = end_time - start_time
memory_usage = max(end_memory - start_memory, 0)
# Create metrics object if not provided
if "metrics" not in tracking_data:
metrics = PerformanceMetrics(
model_name=model_name,
prediction_time=tracking_data.get("prediction_time", total_time),
preprocessing_time=tracking_data.get("preprocessing_time", 0.0),
total_time=total_time,
memory_usage_mb=memory_usage,
accuracy=tracking_data.get("accuracy"),
confidence=tracking_data.get("confidence", 0.0),
timestamp=datetime.now().isoformat(),
input_size=tracking_data.get("input_size", 0),
modality=modality,
)
self.log_performance(metrics)
def _get_memory_usage(self) -> float:
"""Get current memory usage in MB."""
try:
import psutil
process = psutil.Process()
return process.memory_info().rss / 1024 / 1024 # Convert to MB
except ImportError:
return 0.0 # psutil not available
def get_recent_metrics(self, limit: int = 100) -> List[Dict[str, Any]]:
"""Get recent performance metrics."""
with sqlite3.connect(self.db_path) as conn:
conn.row_factory = sqlite3.Row # Enable column access by name
cursor = conn.execute(
"""
SELECT * FROM performance_metrics
ORDER BY timestamp DESC
LIMIT ?
""",
(limit,),
)
return [dict(row) for row in cursor.fetchall()]
def get_model_statistics(self, model_name: Optional[str] = None) -> Dict[str, Any]:
"""Get statistical summary of model performance."""
where_clause = "WHERE model_name = ?" if model_name else ""
params = (model_name,) if model_name else ()
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute(
f"""
SELECT
model_name,
COUNT(*) as total_inferences,
AVG(prediction_time) as avg_prediction_time,
AVG(preprocessing_time) as avg_preprocessing_time,
AVG(total_time) as avg_total_time,
AVG(memory_usage_mb) as avg_memory_usage,
AVG(confidence) as avg_confidence,
MIN(total_time) as fastest_inference,
MAX(total_time) as slowest_inference
FROM performance_metrics
{where_clause}
GROUP BY model_name
""",
params,
)
results = cursor.fetchall()
if model_name and results:
# Return single model stats as dict
row = results[0]
return {
"model_name": row[0],
"total_inferences": row[1],
"avg_prediction_time": row[2],
"avg_preprocessing_time": row[3],
"avg_total_time": row[4],
"avg_memory_usage": row[5],
"avg_confidence": row[6],
"fastest_inference": row[7],
"slowest_inference": row[8],
}
elif not model_name:
# Return all models stats as dict of dicts
return {
row[0]: {
"model_name": row[0],
"total_inferences": row[1],
"avg_prediction_time": row[2],
"avg_preprocessing_time": row[3],
"avg_total_time": row[4],
"avg_memory_usage": row[5],
"avg_confidence": row[6],
"fastest_inference": row[7],
"slowest_inference": row[8],
}
for row in results
}
else:
return {}
def create_performance_visualization(self) -> plt.Figure:
"""Create performance visualization charts."""
metrics = self.get_recent_metrics(50)
if not metrics:
return None
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8))
# Convert to convenient format
models = [m["model_name"] for m in metrics]
times = [m["total_time"] for m in metrics]
confidences = [m["confidence"] for m in metrics]
timestamps = [datetime.fromisoformat(m["timestamp"]) for m in metrics]
# 1. Inference Time Over Time
ax1.plot(timestamps, times, "o-", alpha=0.7)
ax1.set_title("Inference Time Over Time")
ax1.set_ylabel("Time (seconds)")
ax1.tick_params(axis="x", rotation=45)
# 2. Performance by Model
model_stats = self.get_model_statistics()
if model_stats:
model_names = list(model_stats.keys())
avg_times = [model_stats[m]["avg_total_time"] for m in model_names]
ax2.bar(model_names, avg_times, alpha=0.7)
ax2.set_title("Average Inference Time by Model")
ax2.set_ylabel("Time (seconds)")
ax2.tick_params(axis="x", rotation=45)
# 3. Confidence Distribution
ax3.hist(confidences, bins=20, alpha=0.7)
ax3.set_title("Confidence Score Distribution")
ax3.set_xlabel("Confidence")
ax3.set_ylabel("Frequency")
# 4. Memory Usage if available
memory_usage = [
m["memory_usage_mb"] for m in metrics if m["memory_usage_mb"] is not None
]
if memory_usage:
ax4.plot(range(len(memory_usage)), memory_usage, "o-", alpha=0.7)
ax4.set_title("Memory Usage")
ax4.set_xlabel("Inference Number")
ax4.set_ylabel("Memory (MB)")
else:
ax4.text(
0.5,
0.5,
"Memory tracking\nnot available",
ha="center",
va="center",
transform=ax4.transAxes,
)
ax4.set_title("Memory Usage")
plt.tight_layout()
return fig
def export_metrics(self, format: str = "json") -> str:
"""Export performance metrics in specified format."""
metrics = self.get_recent_metrics(1000) # Get more for export
if format == "json":
return json.dumps(metrics, indent=2, default=str)
elif format == "csv":
import pandas as pd
df = pd.DataFrame(metrics)
return df.to_csv(index=False)
else:
raise ValueError(f"Unsupported format: {format}")
# Global tracker instance
_tracker = None
def get_performance_tracker() -> PerformanceTracker:
"""Get global performance tracker instance."""
global _tracker
if _tracker is None:
_tracker = PerformanceTracker()
return _tracker
def display_performance_dashboard():
"""Display performance tracking dashboard in Streamlit."""
tracker = get_performance_tracker()
st.markdown("### 📈 Performance Dashboard")
# Recent metrics summary
recent_metrics = tracker.get_recent_metrics(20)
if not recent_metrics:
st.info(
"No performance data available yet. Run some inferences to see metrics."
)
return
# Summary statistics
col1, col2, col3, col4 = st.columns(4)
total_inferences = len(recent_metrics)
avg_time = np.mean([m["total_time"] for m in recent_metrics])
avg_confidence = np.mean([m["confidence"] for m in recent_metrics])
unique_models = len(set(m["model_name"] for m in recent_metrics))
with col1:
st.metric("Total Inferences", total_inferences)
with col2:
st.metric("Avg Time", f"{avg_time:.3f}s")
with col3:
st.metric("Avg Confidence", f"{avg_confidence:.3f}")
with col4:
st.metric("Models Used", unique_models)
# Performance visualization
fig = tracker.create_performance_visualization()
if fig:
st.pyplot(fig)
# Model comparison table
st.markdown("#### Model Performance Comparison")
model_stats = tracker.get_model_statistics()
if model_stats:
import pandas as pd
stats_data = []
for model_name, stats in model_stats.items():
stats_data.append(
{
"Model": model_name,
"Total Inferences": stats["total_inferences"],
"Avg Time (s)": f"{stats['avg_total_time']:.3f}",
"Avg Confidence": f"{stats['avg_confidence']:.3f}",
"Fastest (s)": f"{stats['fastest_inference']:.3f}",
"Slowest (s)": f"{stats['slowest_inference']:.3f}",
}
)
df = pd.DataFrame(stats_data)
st.dataframe(df, use_container_width=True)
# Export options
with st.expander("📥 Export Performance Data"):
col1, col2 = st.columns(2)
with col1:
if st.button("Export JSON"):
json_data = tracker.export_metrics("json")
st.download_button(
"Download JSON",
json_data,
"performance_metrics.json",
"application/json",
)
with col2:
if st.button("Export CSV"):
csv_data = tracker.export_metrics("csv")
st.download_button(
"Download CSV", csv_data, "performance_metrics.csv", "text/csv"
)
if __name__ == "__main__":
# Test the performance tracker
tracker = PerformanceTracker()
# Simulate some metrics
for i in range(5):
metrics = PerformanceMetrics(
model_name=f"test_model_{i%2}",
prediction_time=0.1 + i * 0.01,
preprocessing_time=0.05,
total_time=0.15 + i * 0.01,
memory_usage_mb=100 + i * 10,
accuracy=0.8 + i * 0.02,
confidence=0.7 + i * 0.05,
timestamp=datetime.now().isoformat(),
input_size=500,
modality="raman",
)
tracker.log_performance(metrics)
print("Performance tracking test completed!")
print(f"Recent metrics: {len(tracker.get_recent_metrics())}")
print(f"Model stats: {tracker.get_model_statistics()}")
|