Spaces:
Running
Running
File size: 15,337 Bytes
b2793c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
"""
Enhanced Data Management System for POLYMEROS
Implements contextual knowledge networks and metadata preservation
"""
import os
import json
import hashlib
from dataclasses import dataclass, asdict
from datetime import datetime
from typing import Dict, List, Optional, Any, Tuple
from pathlib import Path
import numpy as np
from utils.preprocessing import preprocess_spectrum
@dataclass
class SpectralMetadata:
"""Comprehensive metadata for spectral data"""
filename: str
acquisition_date: Optional[str] = None
instrument_type: str = "Raman"
laser_wavelength: Optional[float] = None
integration_time: Optional[float] = None
laser_power: Optional[float] = None
temperature: Optional[float] = None
humidity: Optional[float] = None
sample_preparation: Optional[str] = None
operator: Optional[str] = None
data_quality_score: Optional[float] = None
preprocessing_history: Optional[List[str]] = None
def __post_init__(self):
if self.preprocessing_history is None:
self.preprocessing_history = []
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "SpectralMetadata":
return cls(**data)
@dataclass
class ProvenanceRecord:
"""Complete provenance tracking for scientific reproducibility"""
operation: str
timestamp: str
parameters: Dict[str, Any]
input_hash: str
output_hash: str
operator: str = "system"
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "ProvenanceRecord":
return cls(**data)
class ContextualSpectrum:
"""Enhanced spectral data with context and provenance"""
def __init__(
self,
x_data: np.ndarray,
y_data: np.ndarray,
metadata: SpectralMetadata,
label: Optional[int] = None,
):
self.x_data = x_data
self.y_data = y_data
self.metadata = metadata
self.label = label
self.provenance: List[ProvenanceRecord] = []
self.relationships: Dict[str, List[str]] = {
"similar_spectra": [],
"related_samples": [],
}
# Calculate initial hash
self._update_hash()
def _calculate_hash(self, data: np.ndarray) -> str:
"""Calculate hash of numpy array for provenance tracking"""
return hashlib.sha256(data.tobytes()).hexdigest()[:16]
def _update_hash(self):
"""Update data hash after modifications"""
self.data_hash = self._calculate_hash(self.y_data)
def add_provenance(
self, operation: str, parameters: Dict[str, Any], operator: str = "system"
):
"""Add provenance record for operation"""
input_hash = self.data_hash
record = ProvenanceRecord(
operation=operation,
timestamp=datetime.now().isoformat(),
parameters=parameters,
input_hash=input_hash,
output_hash="", # Will be updated after operation
operator=operator,
)
self.provenance.append(record)
return record
def finalize_provenance(self, record: ProvenanceRecord):
"""Finalize provenance record with output hash"""
self._update_hash()
record.output_hash = self.data_hash
def apply_preprocessing(self, **kwargs) -> Tuple[np.ndarray, np.ndarray]:
"""Apply preprocessing with full provenance tracking"""
record = self.add_provenance("preprocessing", kwargs)
# Apply preprocessing
x_processed, y_processed = preprocess_spectrum(
self.x_data, self.y_data, **kwargs
)
# Update data and finalize provenance
self.x_data = x_processed
self.y_data = y_processed
self.finalize_provenance(record)
# Update metadata
if self.metadata.preprocessing_history is None:
self.metadata.preprocessing_history = []
self.metadata.preprocessing_history.append(
f"preprocessing_{datetime.now().isoformat()[:19]}"
)
return x_processed, y_processed
def to_dict(self) -> Dict[str, Any]:
"""Serialize to dictionary"""
return {
"x_data": self.x_data.tolist(),
"y_data": self.y_data.tolist(),
"metadata": self.metadata.to_dict(),
"label": self.label,
"provenance": [p.to_dict() for p in self.provenance],
"relationships": self.relationships,
"data_hash": self.data_hash,
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "ContextualSpectrum":
"""Deserialize from dictionary"""
spectrum = cls(
x_data=np.array(data["x_data"]),
y_data=np.array(data["y_data"]),
metadata=SpectralMetadata.from_dict(data["metadata"]),
label=data.get("label"),
)
spectrum.provenance = [
ProvenanceRecord.from_dict(p) for p in data["provenance"]
]
spectrum.relationships = data["relationships"]
spectrum.data_hash = data["data_hash"]
return spectrum
class KnowledgeGraph:
"""Knowledge graph for managing relationships between spectra and samples"""
def __init__(self):
self.nodes: Dict[str, ContextualSpectrum] = {}
self.edges: Dict[str, List[Dict[str, Any]]] = {}
def add_spectrum(self, spectrum: ContextualSpectrum, node_id: Optional[str] = None):
"""Add spectrum to knowledge graph"""
if node_id is None:
node_id = spectrum.data_hash
self.nodes[node_id] = spectrum
self.edges[node_id] = []
# Auto-detect relationships
self._detect_relationships(node_id)
def _detect_relationships(self, node_id: str):
"""Automatically detect relationships between spectra"""
current_spectrum = self.nodes[node_id]
for other_id, other_spectrum in self.nodes.items():
if other_id == node_id:
continue
# Check for similar acquisition conditions
if self._are_similar_conditions(current_spectrum, other_spectrum):
self.add_relationship(node_id, other_id, "similar_conditions", 0.8)
# Check for spectral similarity (simplified)
similarity = self._calculate_spectral_similarity(
current_spectrum.y_data, other_spectrum.y_data
)
if similarity > 0.9:
self.add_relationship(
node_id, other_id, "spectral_similarity", similarity
)
def _are_similar_conditions(
self, spec1: ContextualSpectrum, spec2: ContextualSpectrum
) -> bool:
"""Check if two spectra were acquired under similar conditions"""
meta1, meta2 = spec1.metadata, spec2.metadata
# Check instrument type
if meta1.instrument_type != meta2.instrument_type:
return False
# Check laser wavelength (if available)
if (
meta1.laser_wavelength
and meta2.laser_wavelength
and abs(meta1.laser_wavelength - meta2.laser_wavelength) > 1.0
):
return False
return True
def _calculate_spectral_similarity(
self, spec1: np.ndarray, spec2: np.ndarray
) -> float:
"""Calculate similarity between two spectra"""
if len(spec1) != len(spec2):
return 0.0
# Normalize spectra
spec1_norm = (spec1 - np.min(spec1)) / (np.max(spec1) - np.min(spec1) + 1e-8)
spec2_norm = (spec2 - np.min(spec2)) / (np.max(spec2) - np.min(spec2) + 1e-8)
# Calculate correlation coefficient
correlation = np.corrcoef(spec1_norm, spec2_norm)[0, 1]
return max(0.0, correlation)
def add_relationship(
self, node1: str, node2: str, relationship_type: str, weight: float
):
"""Add relationship between two nodes"""
edge = {
"target": node2,
"type": relationship_type,
"weight": weight,
"timestamp": datetime.now().isoformat(),
}
self.edges[node1].append(edge)
# Add reverse edge
reverse_edge = {
"target": node1,
"type": relationship_type,
"weight": weight,
"timestamp": datetime.now().isoformat(),
}
if node2 in self.edges:
self.edges[node2].append(reverse_edge)
def get_related_spectra(
self, node_id: str, relationship_type: Optional[str] = None
) -> List[str]:
"""Get spectra related to given node"""
if node_id not in self.edges:
return []
related = []
for edge in self.edges[node_id]:
if relationship_type is None or edge["type"] == relationship_type:
related.append(edge["target"])
return related
def export_knowledge_graph(self, filepath: str):
"""Export knowledge graph to JSON file"""
export_data = {
"nodes": {k: v.to_dict() for k, v in self.nodes.items()},
"edges": self.edges,
"metadata": {
"created": datetime.now().isoformat(),
"total_nodes": len(self.nodes),
"total_edges": sum(len(edges) for edges in self.edges.values()),
},
}
with open(filepath, "w", encoding="utf-8") as f:
json.dump(export_data, f, indent=2)
class EnhancedDataManager:
"""Main data management interface for POLYMEROS"""
def __init__(self, cache_dir: str = "data_cache"):
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
self.knowledge_graph = KnowledgeGraph()
self.quality_thresholds = {
"min_intensity": 10.0,
"min_signal_to_noise": 3.0,
"max_baseline_drift": 0.1,
}
def load_spectrum_with_context(
self, filepath: str, metadata: Optional[Dict[str, Any]] = None
) -> ContextualSpectrum:
"""Load spectrum with automatic metadata extraction and quality assessment"""
from scripts.plot_spectrum import load_spectrum
# Load raw data
x_data, y_data = load_spectrum(filepath)
# Extract metadata
if metadata is None:
metadata = self._extract_metadata_from_file(filepath)
spectral_metadata = SpectralMetadata(
filename=os.path.basename(filepath), **metadata
)
# Create contextual spectrum
spectrum = ContextualSpectrum(
np.array(x_data), np.array(y_data), spectral_metadata
)
# Assess data quality
quality_score = self._assess_data_quality(np.array(y_data))
spectrum.metadata.data_quality_score = quality_score
# Add to knowledge graph
self.knowledge_graph.add_spectrum(spectrum)
return spectrum
def _extract_metadata_from_file(self, filepath: str) -> Dict[str, Any]:
"""Extract metadata from filename and file properties"""
filename = os.path.basename(filepath)
metadata = {
"acquisition_date": datetime.fromtimestamp(
os.path.getmtime(filepath)
).isoformat(),
"instrument_type": "Raman", # Default
}
# Extract information from filename patterns
if "785nm" in filename.lower():
metadata["laser_wavelength"] = "785.0"
elif "532nm" in filename.lower():
metadata["laser_wavelength"] = "532.0"
return metadata
def _assess_data_quality(self, y_data: np.ndarray) -> float:
"""Assess spectral data quality using multiple metrics"""
scores = []
# Signal intensity check
max_intensity = np.max(y_data)
if max_intensity >= self.quality_thresholds["min_intensity"]:
scores.append(min(1.0, max_intensity / 1000.0))
else:
scores.append(0.0)
# Signal-to-noise ratio estimation
signal = np.mean(y_data)
noise = np.std(y_data[y_data < np.percentile(y_data, 10)])
snr = signal / (noise + 1e-8)
if snr >= self.quality_thresholds["min_signal_to_noise"]:
scores.append(min(1.0, snr / 10.0))
else:
scores.append(0.0)
# Baseline stability
baseline_variation = np.std(y_data) / (np.mean(y_data) + 1e-8)
baseline_score = max(
0.0,
1.0 - baseline_variation / self.quality_thresholds["max_baseline_drift"],
)
scores.append(baseline_score)
return float(np.mean(scores))
def preprocess_with_tracking(
self, spectrum: ContextualSpectrum, **preprocessing_params
) -> ContextualSpectrum:
"""Apply preprocessing with full tracking"""
spectrum.apply_preprocessing(**preprocessing_params)
return spectrum
def get_preprocessing_recommendations(
self, spectrum: ContextualSpectrum
) -> Dict[str, Any]:
"""Provide intelligent preprocessing recommendations based on data characteristics"""
recommendations = {}
y_data = spectrum.y_data
# Baseline correction recommendation
baseline_variation = np.std(np.diff(y_data))
if baseline_variation > 0.05:
recommendations["do_baseline"] = True
recommendations["degree"] = 3 if baseline_variation > 0.1 else 2
else:
recommendations["do_baseline"] = False
# Smoothing recommendation
noise_level = np.std(y_data[y_data < np.percentile(y_data, 20)])
if noise_level > 0.01:
recommendations["do_smooth"] = True
recommendations["window_length"] = 11 if noise_level > 0.05 else 7
else:
recommendations["do_smooth"] = False
# Normalization is generally recommended
recommendations["do_normalize"] = True
return recommendations
def save_session(self, session_name: str):
"""Save current data management session"""
session_file = self.cache_dir / f"{session_name}_session.json"
self.knowledge_graph.export_knowledge_graph(str(session_file))
def load_session(self, session_name: str):
"""Load saved data management session"""
session_file = self.cache_dir / f"{session_name}_session.json"
if session_file.exists():
with open(session_file, "r") as f:
data = json.load(f)
# Reconstruct knowledge graph
for node_id, node_data in data["nodes"].items():
spectrum = ContextualSpectrum.from_dict(node_data)
self.knowledge_graph.nodes[node_id] = spectrum
self.knowledge_graph.edges = data["edges"]
|