Spaces:
Sleeping
Sleeping
File size: 13,188 Bytes
a427341 345529d a427341 2c41fa3 65e5904 a427341 8c75a82 a427341 8c75a82 a427341 345529d a427341 2c41fa3 a427341 8c75a82 a427341 2c41fa3 a427341 8c75a82 a427341 8c75a82 a427341 2c41fa3 a427341 8c75a82 a427341 2c41fa3 a427341 2c41fa3 a427341 2c41fa3 a427341 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 8c75a82 2c41fa3 a427341 2c41fa3 8c75a82 a427341 65e5904 a427341 2c41fa3 a427341 2c41fa3 8c75a82 a427341 2c41fa3 a427341 65e5904 77734fd 65e5904 a427341 2c41fa3 65e5904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
"""Session results management for multi-file inference.
Handles in-memory results table and export functionality"""
import streamlit as st
import pandas as pd
import json
from datetime import datetime
from typing import Dict, List, Any, Optional
import numpy as np
from pathlib import Path
import io
def local_css(file_name):
with open(file_name, encoding="utf-8") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
class ResultsManager:
"""Manages session-wide results for multi-file inference"""
RESULTS_KEY = "inference_results"
@staticmethod
def init_results_table() -> None:
"""Initialize the results table in session state"""
if ResultsManager.RESULTS_KEY not in st.session_state:
st.session_state[ResultsManager.RESULTS_KEY] = []
@staticmethod
def add_results(
filename: str,
model_name: str,
prediction: int,
predicted_class: str,
confidence: float,
logits: List[float],
ground_truth: Optional[int] = None,
processing_time: float = 0.0,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
"""Add a single inference result to the results table"""
ResultsManager.init_results_table()
result = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"filename": filename,
"model": model_name,
"prediction": prediction,
"predicted_class": predicted_class,
"confidence": confidence,
"logits": logits,
"ground_truth": ground_truth,
"processing_time": processing_time,
"metadata": metadata or {},
}
st.session_state[ResultsManager.RESULTS_KEY].append(result)
@staticmethod
def get_results() -> List[Dict[str, Any]]:
"""Get all inference results"""
ResultsManager.init_results_table()
return st.session_state[ResultsManager.RESULTS_KEY]
@staticmethod
def get_results_count() -> int:
"""Get the number of stored results"""
return len(ResultsManager.get_results())
@staticmethod
def clear_results() -> None:
"""Clear all stored results"""
st.session_state[ResultsManager.RESULTS_KEY] = []
@staticmethod
def get_spectrum_data_for_file(filename: str) -> Optional[Dict[str, np.ndarray]]:
"""
Retrieves raw and resampled spectrum data for a given filename.
Returns None if no data is found for the filename or if data is incomplete.
"""
results = ResultsManager.get_results()
for r in results:
if r["filename"] == filename:
# Ensure all required keys are present and not None
if all(
r.get(k) is not None
for k in ["x_raw", "y_raw", "x_resampled", "y_resampled"]
):
return {
"x_raw": r["x_raw"],
"y_raw": r["y_raw"],
"x_resampled": r["x_resampled"],
"y_resampled": r["y_resampled"],
}
else:
# If the metadata exists but spectrum data is missing for this entry,
# it means it was processed before we started storing spectrums.
return None
return None # Return None if filename not found
@staticmethod
def get_results_dataframe() -> pd.DataFrame:
"""Convert results to pandas DataFrame for display and export"""
results = ResultsManager.get_results()
if not results:
return pd.DataFrame()
# ===Flatten the results for DataFrame===
df_data = []
for result in results:
row = {
"Timestamp": result["timestamp"],
"Filename": result["filename"],
"Model": result["model"],
"Prediction": result["prediction"],
"Predicted Class": result["predicted_class"],
"Confidence": f"{result['confidence']:.3f}",
"Stable Logit": (
f"{result['logits'][0]:.3f}" if len(result["logits"]) > 0 else "N/A"
),
"Weathered Logit": (
f"{result['logits'][1]:.3f}" if len(result["logits"]) > 1 else "N/A"
),
"Ground Truth": (
result["ground_truth"]
if result["ground_truth"] is not None
else "Unknown"
),
"Processing Time (s)": f"{result['processing_time']:.3f}",
}
df_data.append(row)
return pd.DataFrame(df_data)
@staticmethod
def export_to_csv() -> bytes:
"""Export results to CSV format"""
df = ResultsManager.get_results_dataframe()
if df.empty:
return b""
# ===Use StringIO to create CSV in memory===
csv_buffer = io.StringIO()
df.to_csv(csv_buffer, index=False)
return csv_buffer.getvalue().encode("utf-8")
@staticmethod
def export_to_json() -> str:
"""Export results to JSON format"""
results = ResultsManager.get_results()
return json.dumps(results, indent=2, default=str)
@staticmethod
def get_summary_stats() -> Dict[str, Any]:
"""Get summary statistics for the results"""
results = ResultsManager.get_results()
if not results:
return {}
df = ResultsManager.get_results_dataframe()
stats = {
"total_files": len(results),
"models_used": list(set(r["model"] for r in results)),
"stable_predictions": sum(1 for r in results if r["prediction"] == 0),
"weathered_predictions": sum(1 for r in results if r["prediction"] == 1),
"avg_confidence": sum(r["confidence"] for r in results) / len(results),
"avg_processing_time": sum(r["processing_time"] for r in results)
/ len(results),
"files_with_ground_truth": sum(
1 for r in results if r["ground_truth"] is not None
),
}
# ===Calculate accuracy if ground truth is available===
correct_predictions = sum(
1
for r in results
if r["ground_truth"] is not None and r["prediction"] == r["ground_truth"]
)
total_with_gt = stats["files_with_ground_truth"]
if total_with_gt > 0:
stats["accuracy"] = correct_predictions / total_with_gt
else:
stats["accuracy"] = None
return stats
@staticmethod
def remove_result_by_filename(filename: str) -> bool:
"""Remove a result by filename. Returns True if removed, False if not found."""
results = ResultsManager.get_results()
original_length = len(results)
# Filter out results with matching filename
st.session_state[ResultsManager.RESULTS_KEY] = [
r for r in results if r["filename"] != filename
]
return len(st.session_state[ResultsManager.RESULTS_KEY]) < original_length
@staticmethod
# ==UTILITY FUNCTIONS==
def init_session_state():
"""Keep a persistent session state"""
defaults = {
"status_message": "Ready to analyze polymer spectra 🔬",
"status_type": "info",
"input_text": None,
"filename": None,
"input_source": None, # "upload", "batch" or "sample"
"sample_select": "-- Select Sample --",
"input_mode": "Upload File", # controls which pane is visible
"inference_run_once": False,
"x_raw": None,
"y_raw": None,
"y_resampled": None,
"log_messages": [],
"uploader_version": 0,
"current_upload_key": "upload_txt_0",
"active_tab": "Details",
"batch_mode": False,
}
# Init session state with defaults
for key, value in defaults.items():
if key not in st.session_state:
st.session_state[key] = value
@staticmethod
def reset_ephemeral_state():
"""Comprehensive reset for the entire app state."""
current_version = st.session_state.get("uploader_version", 0)
# Define keys that should NOT be cleared by a full reset
keep_keys = {"model_select", "input_mode"}
for k in list(st.session_state.keys()):
if k not in keep_keys:
st.session_state.pop(k, None)
st.session_state["status_message"] = "Ready to analyze polymer spectra"
st.session_state["status_type"] = "info"
st.session_state["batch_files"] = []
st.session_state["inference_run_once"] = True
st.session_state[""] = ""
# CRITICAL: Increment the preserved version and re-assign it
st.session_state["uploader_version"] = current_version + 1
st.session_state["current_upload_key"] = (
f"upload_txt_{st.session_state['uploader_version']}"
)
@staticmethod
def display_results_table() -> None:
"""Display the results table in Streamlit UI"""
df = ResultsManager.get_results_dataframe()
if df.empty:
st.info(
"No inference results yet. Upload files and run analysis to see results here."
)
return
local_css("static/style.css")
st.subheader(f"Inference Results ({len(df)} files)")
# ==Summary stats==
stats = ResultsManager.get_summary_stats()
if stats:
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Files", stats["total_files"])
with col2:
st.metric("Avg Confidence", f"{stats['avg_confidence']:.3f}")
with col3:
st.metric(
"Stable/Weathered",
f"{stats['stable_predictions']}/{stats['weathered_predictions']}",
)
with col4:
if stats["accuracy"] is not None:
st.metric("Accuracy", f"{stats['accuracy']:.3f}")
else:
st.metric("Accuracy", "N/A")
# ==Results Table==
st.dataframe(df, use_container_width=True)
with st.container(border=None, key="page-link-container"):
st.page_link(
"pages/2_Dashboard.py",
label="Inference Analysis Dashboard",
help="Dive deeper into your batch results.",
use_container_width=False,
)
# ==Export Button==
with st.container(border=None, key="buttons-container"):
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
csv_data = ResultsManager.export_to_csv()
if csv_data:
with st.container(border=None, key="csv-button"):
st.download_button(
label="Download CSV",
data=csv_data,
file_name=f"polymer_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv",
help="Export Results to CSV",
use_container_width=True,
type="tertiary",
)
with col2:
json_data = ResultsManager.export_to_json()
if json_data:
with st.container(border=None, key="json-button"):
st.download_button(
label="Download JSON",
data=json_data,
file_name=f"polymer_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json",
help="Export Results to JSON",
type="tertiary",
use_container_width=True,
)
with col3:
with st.container(border=None, key="clearall-button"):
st.button(
label="Clear All Results",
help="Clear all stored results",
on_click=ResultsManager.reset_ephemeral_state,
use_container_width=True,
type="tertiary",
)
|