File size: 14,280 Bytes
0fec4be
 
 
 
 
9d0759c
 
9e65713
0fec4be
 
 
 
 
 
9d0759c
9e65713
 
 
0fec4be
 
9d0759c
0fec4be
 
 
9d0759c
0fec4be
 
9d0759c
0fec4be
 
 
 
9e65713
0fec4be
9d0759c
0fec4be
 
 
9e65713
0fec4be
 
 
 
 
9d0759c
0fec4be
 
 
 
9d0759c
 
9e65713
 
 
 
 
 
 
 
9d0759c
 
 
 
 
 
 
 
9e65713
 
9d0759c
0fec4be
9d0759c
 
9e65713
 
0fec4be
9d0759c
 
0fec4be
9d0759c
 
 
0fec4be
9d0759c
 
 
 
 
 
 
9e65713
 
0fec4be
9d0759c
0fec4be
 
 
 
9d0759c
0fec4be
 
 
 
 
 
9e65713
0fec4be
 
 
9d0759c
0fec4be
 
 
 
 
 
 
9d0759c
0fec4be
 
 
 
 
 
9d0759c
 
0fec4be
 
 
 
9e65713
0fec4be
 
9d0759c
0fec4be
 
9d0759c
 
 
 
0fec4be
 
 
9e65713
0fec4be
9e65713
0fec4be
 
9d0759c
0fec4be
 
9d0759c
 
 
 
0fec4be
 
 
 
9e65713
0fec4be
 
9d0759c
 
9e65713
 
0fec4be
 
9d0759c
 
 
0fec4be
9e65713
 
 
0fec4be
 
 
 
 
 
9d0759c
0fec4be
 
 
 
 
 
9d0759c
0fec4be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e65713
0fec4be
 
9d0759c
0fec4be
 
 
 
 
 
9e65713
0fec4be
 
 
9d0759c
0fec4be
 
 
 
 
 
 
9d0759c
0fec4be
 
 
 
 
 
 
 
 
 
 
 
 
9d0759c
0fec4be
9e65713
0fec4be
9d0759c
0fec4be
 
 
 
 
 
9e65713
0fec4be
 
 
 
 
9d0759c
0fec4be
 
 
 
 
 
 
 
 
 
 
 
9e65713
 
0fec4be
 
 
 
9e65713
 
 
 
 
 
 
0fec4be
 
 
 
9d0759c
9e65713
 
0fec4be
 
 
9d0759c
9e65713
 
 
 
0fec4be
 
9e65713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fec4be
9d0759c
0fec4be
 
 
9d0759c
0fec4be
 
 
 
 
 
 
 
9e65713
0fec4be
 
9d0759c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
"""Multi-file processing utiltities for batch inference.

Handles multiple file uploads and iterative processing."""

from typing import List, Dict, Any, Tuple, Optional
import time
import streamlit as st
import numpy as np
import pandas as pd

from .preprocessing import resample_spectrum
from .errors import ErrorHandler, safe_execute
from .results_manager import ResultsManager
from .confidence import calculate_softmax_confidence


def parse_spectrum_data(

    text_content: str, filename: str = "unknown"

) -> Tuple[np.ndarray, np.ndarray]:
    """

    Parse spectrum data from text content



    Args:

        text_content: Raw text content of the spectrum file

        filename: Name of the file for error reporting



    Returns:

        Tuple of (x_values, y_values) as numpy arrays



    Raises:

        ValueError: If the data cannot be parsed

    """
    try:
        lines = text_content.strip().split("\n")

        # ==Remove empty lines and comments==
        data_lines = []
        for line in lines:
            line = line.strip()
            if line and not line.startswith("#") and not line.startswith("%"):
                data_lines.append(line)

        if not data_lines:
            raise ValueError("No data lines found in file")

        # ==Try to parse==
        x_vals, y_vals = [], []

        for i, line in enumerate(data_lines):
            try:
                # Handle different separators
                parts = line.replace(",", " ").split()
                numbers = [
                    p
                    for p in parts
                    if p.replace(".", "", 1)
                    .replace("-", "", 1)
                    .replace("+", "", 1)
                    .isdigit()
                ]
                if len(numbers) >= 2:
                    x_val = float(numbers[0])
                    y_val = float(numbers[1])
                    x_vals.append(x_val)
                    y_vals.append(y_val)

            except ValueError:
                ErrorHandler.log_warning(
                    f"Could not parse line {i+1}: {line}", f"Parsing {filename}"
                )
                continue

        if len(x_vals) < 10:  # ==Need minimum points for interpolation==
            raise ValueError(
                f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
            )

        x = np.array(x_vals)
        y = np.array(y_vals)

        # Check for NaNs
        if np.any(np.isnan(x)) or np.any(np.isnan(y)):
            raise ValueError("Input data contains NaN values")

        # Check monotonic increasing x
        if not np.all(np.diff(x) > 0):
            raise ValueError("Wavenumbers must be strictly increasing")

        # Check reasonable range for Raman spectroscopy
        if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100:
            raise ValueError(
                f"Invalid wavenumber range: {min(x)} - {max(x)}. Expected ~400-4000 cm⁻¹ with span >100"
            )

        return x, y

    except Exception as e:
        raise ValueError(f"Failed to parse spectrum data: {str(e)}")


def process_single_file(

    filename: str,

    text_content: str,

    model_choice: str,

    load_model_func,

    run_inference_func,

    label_file_func,

) -> Optional[Dict[str, Any]]:
    """

    Process a single spectrum file



    Args:

        filename: Name of the file

        text_content: Raw text content

        model_choice: Selected model name

        load_model_func: Function to load the model

        run_inference_func: Function to run inference

        label_file_func: Function to extract ground truth label



    Returns:

        Dictionary with processing results or None if failed

    """
    start_time = time.time()

    try:
        # ==Parse spectrum data==
        result, success = safe_execute(
            parse_spectrum_data,
            text_content,
            filename,
            error_context=f"parsing {filename}",
            show_error=False,
        )

        if not success or result is None:
            return None

        x_raw, y_raw = result

        # ==Resample spectrum==
        result, success = safe_execute(
            resample_spectrum,
            x_raw,
            y_raw,
            500,  # TARGET_LEN
            error_context=f"resampling {filename}",
            show_error=False,
        )

        if not success or result is None:
            return None

        x_resampled, y_resampled = result

        # ==Run inference==
        result, success = safe_execute(
            run_inference_func,
            y_resampled,
            model_choice,
            error_context=f"inference on {filename}",
            show_error=False,
        )

        if not success or result is None:
            ErrorHandler.log_error(
                Exception("Inference failed"), f"processing {filename}"
            )
            return None

        prediction, logits_list, probs, inference_time, logits = result

        # ==Calculate confidence==
        if logits is not None:
            probs_np, max_confidence, confidence_level, confidence_emoji = (
                calculate_softmax_confidence(logits)
            )
        else:
            probs_np = np.array([])
            max_confidence = 0.0
            confidence_level = "LOW"
            confidence_emoji = "🔴"

        # ==Get ground truth==
        try:
            ground_truth = label_file_func(filename)
            ground_truth = ground_truth if ground_truth >= 0 else None
        except Exception:
            ground_truth = None

        # ==Get predicted class==
        label_map = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
        predicted_class = label_map.get(prediction, f"Unknown ({prediction})")

        processing_time = time.time() - start_time

        return {
            "filename": filename,
            "success": True,
            "prediction": prediction,
            "predicted_class": predicted_class,
            "confidence": max_confidence,
            "confidence_level": confidence_level,
            "confidence_emoji": confidence_emoji,
            "logits": logits_list if logits_list else [],
            "probabilities": probs_np.tolist() if len(probs_np) > 0 else [],
            "ground_truth": ground_truth,
            "processing_time": processing_time,
            "x_raw": x_raw,
            "y_raw": y_raw,
            "x_resampled": x_resampled,
            "y_resampled": y_resampled,
        }

    except Exception as e:
        ErrorHandler.log_error(e, f"processing {filename}")
        return {
            "filename": filename,
            "success": False,
            "error": str(e),
            "processing_time": time.time() - start_time,
        }


def process_multiple_files(

    uploaded_files: List,

    model_choice: str,

    load_model_func,

    run_inference_func,

    label_file_func,

    progress_callback=None,

) -> List[Dict[str, Any]]:
    """

    Process multiple uploaded files



    Args:

        uploaded_files: List of uploaded file objects

        model_choice: Selected model name

        load_model_func: Function to load the model

        run_inference_func: Function to run inference

        label_file_func: Function to extract ground truth label

        progress_callback: Optional callback to update progress



    Returns:

        List of processing results

    """
    results = []
    total_files = len(uploaded_files)

    ErrorHandler.log_info(f"Starting batch processing of {total_files} files")

    for i, uploaded_file in enumerate(uploaded_files):
        if progress_callback:
            progress_callback(i, total_files, uploaded_file.name)

        try:
            # ==Read file content==
            raw = uploaded_file.read()
            text_content = raw.decode("utf-8") if isinstance(raw, bytes) else raw

            # ==Process the file==
            result = process_single_file(
                uploaded_file.name,
                text_content,
                model_choice,
                load_model_func,
                run_inference_func,
                label_file_func,
            )

            if result:
                results.append(result)

                # ==Add successful results to the results manager==
                if result.get("success", False):
                    ResultsManager.add_results(
                        filename=result["filename"],
                        model_name=model_choice,
                        prediction=result["prediction"],
                        predicted_class=result["predicted_class"],
                        confidence=result["confidence"],
                        logits=result["logits"],
                        ground_truth=result["ground_truth"],
                        processing_time=result["processing_time"],
                        metadata={
                            "confidence_level": result["confidence_level"],
                            "confidence_emoji": result["confidence_emoji"],
                        },
                    )

        except Exception as e:
            ErrorHandler.log_error(e, f"reading file {uploaded_file.name}")
            results.append(
                {
                    "filename": uploaded_file.name,
                    "success": False,
                    "error": f"Failed to read file: {str(e)}",
                }
            )

    if progress_callback:
        progress_callback(total_files, total_files, "Complete")

    ErrorHandler.log_info(
        f"Completed batch processing: {sum(1 for r in results if r.get('success', False))}/{total_files} successful"
    )

    return results


def display_batch_results(batch_results: list):
    """Renders a clean, consolidated summary of batch processing results using metrics and a pandas DataFrame replacing the old expander list"""
    if not batch_results:
        st.info("No batch results to display.")
        return

    successful_runs = [r for r in batch_results if r.get("success", False)]
    failed_runs = [r for r in batch_results if not r.get("success", False)]

    # 1. High Level Metrics
    st.markdown("###### Batch Summary")
    metric_cols = st.columns(3)
    metric_cols[0].metric("Total Files Processed", f"{len(batch_results)}")
    metric_cols[1].metric("✔️ Successful", f"{len(successful_runs)}")
    metric_cols[2].metric("❌ Failed", f"{len(failed_runs)}")

    # 3 Hidden Failure Details
    if failed_runs:
        with st.expander(
            f"View details for {len(failed_runs)} failed file(s)", expanded=False
        ):
            for r in failed_runs:
                st.error(f"**File:** `{r.get('filename', 'unknown')}`")
                st.caption(
                    f"Reason for failure: {r.get('error', 'No details provided')}"
                )


# Legacy display batch results
# def display_batch_results(results: List[Dict[str, Any]]) -> None:
#     """
#     Display batch processing results in the UI

#     Args:
#         results: List of processing results
#     """
#     if not results:
#         st.warning("No results to display")
#         return

#     successful = [r for r in results if r.get("success", False)]
#     failed = [r for r in results if not r.get("success", False)]

#     # ==Summary==
#     col1, col2, col3 = st.columns(3, border=True)
#     with col1:
#         st.metric("Total Files", len(results))
#     with col2:
#         st.metric("Successful", len(successful),
#                   delta=f"{len(successful)/len(results)*100:.1f}%")
#     with col3:
#         st.metric("Failed", len(
#             failed), delta=f"-{len(failed)/len(results)*100:.1f}%" if failed else "0%")

#     # ==Results tabs==
#     tab1, tab2 = st.tabs(["✅Successful", "❌ Failed"], width="stretch")

#     with tab1:
#         with st.expander("Successful"):
#             if successful:
#                 for result in successful:
#                     with st.expander(f"{result['filename']}", expanded=False):
#                         col1, col2 = st.columns(2)
#                         with col1:
#                             st.write(
#                                 f"**Prediction:** {result['predicted_class']}")
#                             st.write(
#                                 f"**Confidence:** {result['confidence_emoji']} {result['confidence_level']} ({result['confidence']:.3f})")
#                         with col2:
#                             st.write(
#                                 f"**Processing Time:** {result['processing_time']:.3f}s")
#                             if result['ground_truth'] is not None:
#                                 gt_label = {0: "Stable", 1: "Weathered"}.get(
#                                     result['ground_truth'], "Unknown")
#                                 correct = "✅" if result['prediction'] == result['ground_truth'] else "❌"
#                                 st.write(
#                                     f"**Ground Truth:** {gt_label} {correct}")
#             else:
#                 st.info("No successful results")

#     with tab2:
#         if failed:
#             for result in failed:
#                 with st.expander(f"❌ {result['filename']}", expanded=False):
#                     st.error(f"Error: {result.get('error', 'Unknown error')}")
#         else:
#             st.success("No failed files!")


def create_batch_uploader() -> List:
    """

    Create multi-file uploader widget



    Returns:

        List of uploaded files

    """
    uploaded_files = st.file_uploader(
        "Upload multiple Raman spectrum files (.txt)",
        type="txt",
        accept_multiple_files=True,
        help="Select multiple .txt files with wavenumber and intensity columns",
        key="batch_uploader",
    )

    return uploaded_files if uploaded_files else []