Spaces:
Sleeping
Sleeping
File size: 31,584 Bytes
8475e7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
"""Advanced Spectroscopy Integration Module
Support dual FTIR + Raman spectroscopy with ATR-FTIR integration"""
import numpy as np
from scipy.integrate import trapz
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass
from scipy import signal
import scipy.sparse as sparse
from scipy.sparse.linalg import spsolve
from scipy.interpolate import interp1d
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.decomposition import PCA
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
@dataclass
class SpectroscopyType:
"""Define spectroscopy types and their characteristics"""
FTIR = "FTIR"
ATR_FTIR = "ATR-FTIR"
RAMAN = "Raman"
TRANSMISSION_FTIR = "Transmission-FTIR"
REFLECTION_FTIR = "Reflection-FTIR"
@dataclass
class SpectralCharacteristics:
"""Characteristics of different spectroscopy techniques"""
technique: str
wavenumber_range: Tuple[float, float] # cm-1
typical_resolution: float # cm-1
sample_requirements: str
penetration_depth: Optional[str] = None
advantages: Optional[List[str]] = None
limitations: Optional[List[str]] = None
# Define characteristics for each technique
SPECTRAL_CHARACTERISTICS = {
SpectroscopyType.FTIR: SpectralCharacteristics(
technique="FTIR",
wavenumber_range=(400.0, 4000.0),
typical_resolution=4.0,
sample_requirements="Various (solid, liquid, gas)",
penetration_depth="Variable",
advantages=["High spectral resolution", "Wide range", "Quantitative"],
limitations=["Water interference", "Sample preparation"],
),
SpectroscopyType.ATR_FTIR: SpectralCharacteristics(
technique="ATR-FTIR",
wavenumber_range=(600.0, 4000.0),
typical_resolution=4.0,
sample_requirements="Direct solid contact",
penetration_depth="0.5-2 μm",
advantages=["Minimal sample prep", "Solid samples", "Quick analysis"],
limitations=["Surface analysis only", "Pressure sensitive"],
),
SpectroscopyType.RAMAN: SpectralCharacteristics(
technique="Raman",
wavenumber_range=(200, 3500),
typical_resolution=1.0,
sample_requirements="Various (solid, liquid)",
penetration_depth="Variable",
advantages=["Water compatible", "Non-destructive", "Molecular vibrations"],
limitations=["Fluorescence interference", "Weak signals"],
),
}
class AdvancedPreprocessor:
"""Advanced preprocessing pipeline for multi-modal spectroscopy data"""
def __init__(self):
self.techniques_applied = []
self.preprocessing_log = []
def baseline_correction(
self,
wavenumber: np.ndarray,
intensities: np.ndarray,
method: str = "airpls",
**kwargs,
) -> Tuple[np.ndarray, Dict]:
"""
Advanced baseline correction methods
Args:
wavenumber: Wavenumber array
intensities: Intensity array
method: Baseline correction method ('airpls', 'als', 'polynomial', 'rolling_ball')
**kwargs: Method-specific parameters
Returns:
Corrected intensities and processing metadata
"""
metadata = {
"method": method,
"original_range": (intensities.min(), intensities.max()),
}
corrected_intensities = intensities.copy()
if method == "airpls":
corrected_intensities = self._airpls_baseline(intensities, **kwargs)
elif method == "als":
corrected_intensities = self._als_baseline(intensities, **kwargs)
elif method == "polynomial":
degree = kwargs.get("degree", 3)
coeffs = np.polyfit(wavenumber, intensities, degree)
baseline = np.polyval(coeffs, wavenumber)
corrected_intensities = intensities - baseline
metadata["polynomial_degree"] = degree
elif method == "rolling_ball":
ball_radius = kwargs.get("radius", 50)
corrected_intensities = self._rolling_ball_baseline(
intensities, ball_radius
)
metadata["ball_radius"] = ball_radius
self.preprocessing_log.append(f"Baseline correction: {method}")
metadata["corrected_range"] = (
corrected_intensities.min(),
corrected_intensities.max(),
)
return corrected_intensities, metadata
def _airpls_baseline(
self, y: np.ndarray, lambda_: float = 1e4, itermax: int = 15
) -> np.ndarray:
"""
Adaptive Iteratively Reweighted Penalized Least Squares baseline correction
"""
m = len(y)
D = sparse.diags([1, -2, 1], offsets=[0, -1, -2], shape=(m, m - 2))
D = lambda_ * D.dot(D.transpose())
w = np.ones(m)
for i in range(itermax):
W = sparse.spdiags(w, 0, m, m)
Z = W + D
z = spsolve(Z, w * y)
d = y - z
dn = d[d < 0]
m_dn = np.mean(dn) if len(dn) > 0 else 0
s_dn = np.std(dn) if len(dn) > 1 else 1
wt = 1.0 / (1 + np.exp(2 * (d - (2 * s_dn - m_dn)) / s_dn))
if np.linalg.norm(w - wt) / np.linalg.norm(w) < 1e-9:
break
w = wt
z = spsolve(sparse.spdiags(w, 0, m, m) + D, w * y)
return y - z
def _als_baseline(
self, y: np.ndarray, lambda_: float = 1e4, p: float = 0.001
) -> np.ndarray:
"""
Asymmetric Least Squares baseline correction
"""
m = len(y)
D = sparse.diags([1, -2, 1], [0, -1, -2], shape=(m, m - 2))
D_t_D = D.dot(D.transpose())
w = np.ones(m)
for _ in range(10):
W = sparse.spdiags(w, 0, m, m)
Z = W + lambda_ * D_t_D
z = spsolve(Z, w * y)
w = p * (y > z) + (1 - p) * (y < z)
return y - z
def _rolling_ball_baseline(self, y: np.ndarray, radius: int) -> np.ndarray:
"""
Rolling ball baseline correction
"""
n = len(y)
baseline = np.zeros_like(y)
for i in range(n):
start = max(0, i - radius)
end = min(n, i + radius + 1)
baseline[i] = np.min(y[start:end])
return y - baseline
def normalization(
self,
wavenumbers: np.ndarray,
intensities: np.ndarray,
method: str = "vector",
**kwargs,
) -> Tuple[np.ndarray, Dict]:
"""
Advanced normalization methods for spectroscopy data
Args:
wavenumbers: Wavenumber array
intensities: Intensity array
method: Normalization method ('vector', 'min_max', 'standard', 'area', 'peak')
**kwargs: Method-specific parameters
Returns:
Normalized intensities and processing metadata
"""
normalized_intensities = intensities.copy()
metadata = {"method": method, "original_std": np.std(intensities)}
if method == "vector":
norm = np.linalg.norm(intensities)
normalized_intensities = intensities / norm if norm > 0 else intensities
metadata["norm_value"] = norm
elif method == "min_max":
scaler = MinMaxScaler()
normalized_intensities = scaler.fit_transform(
intensities.reshape(-1, 1)
).flatten()
metadata["min_value"] = scaler.data_min_[0]
metadata["max_value"] = scaler.data_max_[0]
elif method == "standard":
scaler = StandardScaler()
normalized_intensities = scaler.fit_transform(
intensities.reshape(-1, 1)
).flatten()
metadata["mean"] = scaler.mean_[0] if scaler.mean_ is not None else None
metadata["std"] = scaler.scale_[0] if scaler.scale_ is not None else None
elif method == "area":
area = trapz(np.abs(intensities), wavenumbers)
normalized_intensities = intensities / area if area > 0 else intensities
metadata["area"] = area
elif method == "peak":
peak_idx = kwargs.get("peak_idx", np.argmax(np.abs(intensities)))
peak_value = intensities[peak_idx]
normalized_intensities = (
intensities / peak_value if peak_value != 0 else intensities
)
metadata["peak_wavenumber"] = wavenumbers[peak_idx]
metadata["peak_value"] = peak_value
self.preprocessing_log.append(f"Normalization: {method}")
metadata["normalized_std"] = np.std(normalized_intensities)
return normalized_intensities, metadata
def noise_reduction(
self,
wavenumbers: np.ndarray,
intensities: np.ndarray,
method: str = "savgol",
**kwargs,
) -> Tuple[np.ndarray, Dict]:
"""
Advanced noise reduction techniques
Args:
wavenumbers: Wavenumber array
intensities: Intensity array
method: Denoising method ('savgol', 'wiener', 'median', 'gaussian')
**kwargs: Method-specific parameters
Returns:
Reduced intensities and processing metadata
"""
denoised_intensities = intensities.copy()
metadata = {
"method": method,
"original_noise_level": np.std(np.diff(intensities)),
}
if method == "savgol":
window_length = kwargs.get("window_length", 11)
polyorder = kwargs.get("polyorder", 3)
if window_length % 2 == 0:
window_length += 1
window_length = max(window_length, polyorder + 1)
window_length = min(window_length, len(intensities) - 1)
if window_length >= 3:
denoised_intensities = signal.savgol_filter(
intensities, window_length, polyorder
)
metadata["window_length"] = window_length
metadata["polyorder"] = polyorder
elif method == "gaussian":
sigma = kwargs.get("sigma", 1.0) # Default value for sigma
denoised_intensities = gaussian_filter1d(intensities, sigma)
metadata["sigma"] = sigma
elif method == "median":
kernel_size = kwargs.get("kernel_size", 5)
denoised_intensities = signal.medfilt(intensities, kernel_size)
metadata["kernel_size"] = kernel_size
elif method == "wiener":
noise_power = kwargs.get("noise_power", None)
denoised_intensities = signal.wiener(intensities, noise=noise_power)
metadata["noise_power"] = noise_power
self.preprocessing_log.append(f"Noise reduction: {method}")
metadata["final_noise_level"] = np.std(np.diff(denoised_intensities))
return denoised_intensities, metadata
def technique_specific_preprocessing(
self, wavenumbers: np.ndarray, intensities: np.ndarray, technique: str
) -> tuple[np.ndarray, Dict]:
"""
Apply technique-specific preprocessing optimizations
Args:
wavenumbers: Wavenumber array
intensities: Intensity array
technique: Spectroscopy technique
Returns:
Processed intensities and metadata
"""
processed_intensities = intensities.copy()
metadata = {"technique": technique, "optimizations_applied": []}
if technique == SpectroscopyType.ATR_FTIR:
processed_intensities = self._atr_correction(wavenumbers, intensities)
metadata["optimizations_applied"].append("ATR_penetration_correction")
elif technique == SpectroscopyType.RAMAN:
processed_intensities = self._cosmic_ray_removal(intensities)
metadata["optimizations_applied"].append("cosmic_ray_removal")
processed_intensities = self._fluorescence_correction(
wavenumbers, processed_intensities
)
metadata["optimizations_applied"].append("fluorescence_correction")
elif technique == SpectroscopyType.FTIR:
processed_intensities = self._atmospheric_correction(
wavenumbers, intensities
)
metadata["optimizations_applied"].append("atmospheric_correction")
self.preprocessing_log.append(f"Technique-specific preprocessing: {technique}")
return processed_intensities, metadata
def _atr_correction(
self, wavenumbers: np.ndarray, intensities: np.ndarray
) -> np.ndarray:
"""
Apply ATR correction for wavelength-dependant penetration depth
"""
correction_factor = np.sqrt(wavenumbers / np.max(wavenumbers))
return intensities * correction_factor
def _cosmic_ray_removal(
self, intensities: np.ndarray, threshold: float = 3.0
) -> np.ndarray:
"""
Remove cosmic ray spikes from Raman spectra
"""
diff = np.abs(np.diff(intensities, prepend=intensities[0]))
mean_diff = np.mean(diff)
std_diff = np.std(diff)
spikes = diff > (mean_diff + threshold * std_diff)
corrected = intensities.copy()
for i in np.where(spikes)[0]:
if i > 0 and i < len(corrected) - 1:
corrected[i] = (corrected[i - 1] + corrected[i + 1]) / 2
return corrected
def _fluorescence_correction(
self, wavenumbers: np.ndarray, intensities: np.ndarray
) -> np.ndarray:
"""
Remove fluorescence from Raman spectra
"""
try:
coeffs = np.polyfit(wavenumbers, intensities, deg=3)
background = np.polyval(coeffs, wavenumbers)
return intensities - background
except np.linalg.LinAlgError:
return intensities
def _atmospheric_correction(
self, wavenumbers: np.ndarray, intensities: np.ndarray
) -> np.ndarray:
"""
Correct for atmospheric CO2 and water vapor absorption
"""
corrected = intensities.copy()
co2_mask = (wavenumbers >= 2350) & (wavenumbers <= 2380)
if np.any(co2_mask):
non_co2_idx = ~co2_mask
if np.any(non_co2_idx):
interp_func = interp1d(
wavenumbers[non_co2_idx],
corrected[non_co2_idx],
kind="linear",
bounds_error=False,
fill_value="extrapolate",
)
corrected[co2_mask] = interp_func(wavenumbers[co2_mask])
return corrected
class MultiModalSpectroscopyEngine:
"""Engine for handling multi-modal spectrscopy data fusion."""
def __init__(self):
self.preprocessor = AdvancedPreprocessor()
self.registered_techniques = {}
self.fusion_strategies = [
"concatenation",
"weighted_average",
"pca_fusion",
"attention_fusion",
]
def register_spectrum(
self,
wavenumbers: np.ndarray,
intensities: np.ndarray,
technique: str,
metadata: Optional[Dict] = None,
) -> str:
"""
Register a spectrum for multi-modal analysis
Args:
wavenumbers: Wavenumber array
intensities: Intensity array
technique: Spectroscopy technique type
metadata: Additional metadata for the spectrum
Returns:
Spectrum ID for tracking
"""
spectrum_id = f"{technique}_{len(self.registered_techniques)}"
self.registered_techniques[spectrum_id] = {
"wavenumbers": wavenumbers,
"intensities": intensities,
"technique": technique,
"metadata": metadata or {},
"characteristics": SPECTRAL_CHARACTERISTICS.get(technique),
}
return spectrum_id
def preprocess_spectrum(
self, spectrum_id: str, preprocessing_config: Optional[Dict] = None
) -> Dict:
"""
Apply comprehensive preprocessing to a registered spectrum
Args:
spectrum_id: ID of registered spectrum
preprocessing_config: Configuration for preprocessing steps
Returns:
Processing results and metadata
"""
if spectrum_id not in self.registered_techniques:
raise ValueError(f"Spectrum with ID {spectrum_id} not found.")
spectrum_data = self.registered_techniques[spectrum_id]
wavenumbers = spectrum_data["wavenumbers"]
intensities = spectrum_data["intensities"]
technique = spectrum_data["technique"]
config = preprocessing_config or {}
processed_intensities = intensities.copy()
processing_metadata = {"steps_applied": [], "step_metadata": {}}
if config.get("baseline_correction", True):
method = config.get("baseline_method", "airpls")
processed_intensities, baseline_metadata = (
self.preprocessor.baseline_correction(
wavenumbers, processed_intensities, method=method
)
)
processing_metadata["steps_applied"].append("baseline_correction")
processing_metadata["step_metadata"][
"baseline_correction"
] = baseline_metadata
processed_intensities, technique_meta = (
self.preprocessor.technique_specific_preprocessing(
wavenumbers, processed_intensities, technique
)
)
processing_metadata["steps_applied"].append("technique_specific")
processing_metadata["step_metadata"]["technique_specific"] = technique_meta
if config.get("noise_reduction", True):
method = config.get("noise_method", "savgol")
processed_intensities, noise_meta = self.preprocessor.noise_reduction(
wavenumbers, processed_intensities, method=method
)
processing_metadata["steps_applied"].append("noise_reduction")
processing_metadata["step_metadata"]["noise_reduction"] = noise_meta
if config.get("normalization", True):
method = config.get("norm_method", "vector")
processed_intensities, norm_meta = self.preprocessor.normalization(
wavenumbers, processed_intensities, method=method
)
processing_metadata["steps_applied"].append("normalization")
processing_metadata["step_metadata"]["normalization"] = norm_meta
self.registered_techniques[spectrum_id][
"processed_intensities"
] = processed_intensities
self.registered_techniques[spectrum_id][
"processing_metadata"
] = processing_metadata
return {
"spectrum_id": spectrum_id,
"processed_intensities": processed_intensities,
"processing_metadata": processing_metadata,
"quality_score": self._calculate_quality_score(
wavenumbers, processed_intensities
),
}
def fuse_spectra(
self,
spectrum_ids: List[str],
fusion_strategy: str = "concatenation",
target_wavenumber_range: Optional[Tuple[float, float]] = None,
) -> Dict:
"""Fuse multiple spectra using specified strategy
Args:
spectrum_ids: List of spectrum IDs to fuse
fusion_strategy: Fusion strategy ('concatenation', 'weighted_average', etc.)
target_wavenumber_range: Common wavenumber for fusion
Returns:
Fused spectrum data and processing metadata
"""
if not all(sid in self.registered_techniques for sid in spectrum_ids):
raise ValueError("Some spectrum IDs not found")
spectra_data = [self.registered_techniques[sid] for sid in spectrum_ids]
if fusion_strategy == "concatenation":
return self._concatenation_fusion(spectra_data, target_wavenumber_range)
elif fusion_strategy == "weighted_average":
return self._weighted_average_fusion(spectra_data, target_wavenumber_range)
elif fusion_strategy == "pca_fusion":
return self._pca_fusion(spectra_data, target_wavenumber_range)
elif fusion_strategy == "attention_fusion":
return self._attention_fusion(spectra_data, target_wavenumber_range)
else:
raise ValueError(
f"Unknown or unsupported fusion strategy: {fusion_strategy}"
)
def _interpolate_to_common_grid(
self,
spectra_data: List[Dict],
target_range: Tuple[float, float],
num_points: int = 1000,
) -> Tuple[np.ndarray, List[np.ndarray]]:
"""Interpolate all spectra to a common wavenumber grid"""
common_wavenumbers = np.linspace(target_range[0], target_range[1], num_points)
interpolated_intensities_list = []
for spectrum in spectra_data:
wavenumbers = spectrum["wavenumbers"]
intensities = spectrum.get("processed_intensities", spectrum["intensities"])
valid_range = (wavenumbers.min(), wavenumbers.max())
mask = (common_wavenumbers >= valid_range[0]) & (
common_wavenumbers <= valid_range[1]
)
interp_intensities = np.zeros_like(common_wavenumbers)
if np.any(mask):
interp_func = interp1d(
wavenumbers,
intensities,
kind="linear",
bounds_error=False,
fill_value=0,
)
interp_intensities[mask] = interp_func(common_wavenumbers[mask])
interpolated_intensities_list.append(interp_intensities)
return common_wavenumbers, interpolated_intensities_list
def _concatenation_fusion(
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
) -> Dict:
"""Simple concatenation of spectra"""
if target_range is None:
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
target_range = (min_wn, max_wn)
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
spectra_data, target_range
)
fused_intensities = np.concatenate(interpolated_intensities)
fused_wavenumbers = np.tile(common_wn, len(spectra_data))
return {
"wavenumbers": fused_wavenumbers,
"intensities": fused_intensities,
"fusion_strategy": "concatenation",
"source_techniques": [s["technique"] for s in spectra_data],
"common_range": target_range,
}
def _weighted_average_fusion(
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
) -> Dict:
"""Weighted average fusion based on data quality"""
if target_range is None:
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
target_range = (min_wn, max_wn)
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
spectra_data, target_range
)
weights = []
for i, spectrum in enumerate(spectra_data):
quality_score = self._calculate_quality_score(
common_wn, interpolated_intensities[i]
)
weights.append(quality_score)
weights = np.array(weights)
weights_sum = np.sum(weights)
weights = (
weights / weights_sum
if weights_sum > 0
else np.full_like(weights, 1.0 / len(weights))
)
fused_intensities = np.zeros_like(common_wn)
for i, intensities in enumerate(interpolated_intensities):
fused_intensities += weights[i] * intensities
return {
"wavenumbers": common_wn,
"intensities": fused_intensities,
"fusion_strategy": "weighted_average",
"weights": weights.tolist(),
"source_techniques": [s["technique"] for s in spectra_data],
"common_range": target_range,
}
def _pca_fusion(
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
) -> Dict:
"""PCA-based fusion to extract common features"""
if target_range is None:
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
target_range = (min_wn, max_wn)
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
spectra_data, target_range
)
spectra_matrix = np.vstack(interpolated_intensities)
n_components = min(len(spectra_data), 3)
pca = PCA(n_components=n_components)
pca.fit(spectra_matrix.T) # Fit on features (wavenumbers)
fused_intensities = np.dot(pca.explained_variance_ratio_, pca.components_)
return {
"wavenumbers": common_wn,
"intensities": fused_intensities,
"fusion_strategy": "pca_fusion",
"explained_variance_ratio": pca.explained_variance_ratio_.tolist(),
"n_components": n_components,
"source_techniques": [s["technique"] for s in spectra_data],
"common_range": target_range,
}
def _attention_fusion(
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
) -> Dict:
"""Attention-based fusion using a simple neural attention-like mechanism"""
if target_range is None:
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
target_range = (min_wn, max_wn)
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
spectra_data, target_range
)
attention_scores = []
for intensities in interpolated_intensities:
variance = np.var(intensities)
quality = self._calculate_quality_score(common_wn, intensities)
attention_scores.append(variance * quality)
attention_scores = np.array(attention_scores)
exp_scores = np.exp(
attention_scores - np.max(attention_scores)
) # Softmax for stability
attention_weights = exp_scores / np.sum(exp_scores)
fused_intensities = np.zeros_like(common_wn)
for i, intensities in enumerate(interpolated_intensities):
fused_intensities += attention_weights[i] * intensities
return {
"wavenumbers": common_wn,
"intensities": fused_intensities,
"fusion_strategy": "attention_fusion",
"attention_weights": attention_weights.tolist(),
"source_techniques": [s["technique"] for s in spectra_data],
"common_range": target_range,
}
def _calculate_quality_score(
self, wavenumbers: np.ndarray, intensities: np.ndarray
) -> float:
"""Calculate spectral quality score based on signal-to-noise ratio and other metrics"""
try:
signal_power = np.var(intensities)
if len(intensities) < 2:
return 0.0
noise_power = np.var(np.diff(intensities))
snr = signal_power / noise_power if noise_power > 0 else 1e6
peaks, properties = find_peaks(
intensities, prominence=0.1 * np.std(intensities)
)
peak_prominence = (
np.mean(properties["prominences"]) if len(peaks) > 0 else 0
)
baseline_stability = 1.0 / (
1.0 + np.std(intensities[:10]) + np.std(intensities[-10:])
)
quality_score = (
np.log10(max(snr, 1)) * 0.5
+ peak_prominence * 0.3
+ baseline_stability * 0.2
)
return max(0, min(1, quality_score))
except Exception:
return 0.5
def get_technique_recommendations(self, sample_type: str) -> List[Dict]:
"""
Recommend optimal spectroscopy techniques for a given sample type
Args:
sample_type: Type of sample (e.g., 'solid_polymer', 'liquid_polymer', 'thin_film')
Returns:
List of recommended techniques with rationale
"""
recommendations = []
if sample_type in ["solid_polymer", "polymer_pellets", "polymer_film"]:
recommendations.extend(
[
{
"technique": SpectroscopyType.ATR_FTIR,
"priority": "high",
"rationale": "Minimal sample preparation, direct solid contact analysis",
"characteristics": SPECTRAL_CHARACTERISTICS[
SpectroscopyType.ATR_FTIR
],
},
{
"technique": SpectroscopyType.RAMAN,
"priority": "medium",
"rationale": "Complementary vibrational information, non-destructive",
"characteristics": SPECTRAL_CHARACTERISTICS[
SpectroscopyType.RAMAN
],
},
]
)
elif sample_type in ["liquid_polymer", "polymer_solution"]:
recommendations.extend(
[
{
"technique": SpectroscopyType.FTIR,
"priority": "high",
"rationale": "Versatile for liquid samples, wide spectral range",
"characteristics": SPECTRAL_CHARACTERISTICS[
SpectroscopyType.FTIR
],
},
{
"technique": SpectroscopyType.RAMAN,
"priority": "high",
"rationale": "Water compatible, molecular vibrations",
"characteristics": SPECTRAL_CHARACTERISTICS[
SpectroscopyType.RAMAN
],
},
]
)
elif sample_type in ["weathered_polymer", "aged_polymer"]:
recommendations.extend(
[
{
"technique": SpectroscopyType.ATR_FTIR,
"priority": "high",
"rationale": "Surface analysis for weathering products",
"characteristics": SPECTRAL_CHARACTERISTICS[
SpectroscopyType.ATR_FTIR
],
},
{
"technique": SpectroscopyType.FTIR,
"priority": "medium",
"rationale": "Bulk analysis for degradation assessment",
"characteristics": SPECTRAL_CHARACTERISTICS[
SpectroscopyType.FTIR
],
},
]
)
return recommendations
""
|