File size: 31,584 Bytes
8475e7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
"""Advanced Spectroscopy Integration Module
Support dual FTIR + Raman spectroscopy with ATR-FTIR integration"""

import numpy as np
from scipy.integrate import trapz
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass
from scipy import signal
import scipy.sparse as sparse
from scipy.sparse.linalg import spsolve
from scipy.interpolate import interp1d
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.decomposition import PCA
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d


@dataclass
class SpectroscopyType:
    """Define spectroscopy types and their characteristics"""

    FTIR = "FTIR"
    ATR_FTIR = "ATR-FTIR"
    RAMAN = "Raman"
    TRANSMISSION_FTIR = "Transmission-FTIR"
    REFLECTION_FTIR = "Reflection-FTIR"


@dataclass
class SpectralCharacteristics:
    """Characteristics of different spectroscopy techniques"""

    technique: str
    wavenumber_range: Tuple[float, float]  # cm-1
    typical_resolution: float  # cm-1
    sample_requirements: str
    penetration_depth: Optional[str] = None
    advantages: Optional[List[str]] = None
    limitations: Optional[List[str]] = None


# Define characteristics for each technique
SPECTRAL_CHARACTERISTICS = {
    SpectroscopyType.FTIR: SpectralCharacteristics(
        technique="FTIR",
        wavenumber_range=(400.0, 4000.0),
        typical_resolution=4.0,
        sample_requirements="Various (solid, liquid, gas)",
        penetration_depth="Variable",
        advantages=["High spectral resolution", "Wide range", "Quantitative"],
        limitations=["Water interference", "Sample preparation"],
    ),
    SpectroscopyType.ATR_FTIR: SpectralCharacteristics(
        technique="ATR-FTIR",
        wavenumber_range=(600.0, 4000.0),
        typical_resolution=4.0,
        sample_requirements="Direct solid contact",
        penetration_depth="0.5-2 μm",
        advantages=["Minimal sample prep", "Solid samples", "Quick analysis"],
        limitations=["Surface analysis only", "Pressure sensitive"],
    ),
    SpectroscopyType.RAMAN: SpectralCharacteristics(
        technique="Raman",
        wavenumber_range=(200, 3500),
        typical_resolution=1.0,
        sample_requirements="Various (solid, liquid)",
        penetration_depth="Variable",
        advantages=["Water compatible", "Non-destructive", "Molecular vibrations"],
        limitations=["Fluorescence interference", "Weak signals"],
    ),
}


class AdvancedPreprocessor:
    """Advanced preprocessing pipeline for multi-modal spectroscopy data"""

    def __init__(self):
        self.techniques_applied = []
        self.preprocessing_log = []

    def baseline_correction(
        self,
        wavenumber: np.ndarray,
        intensities: np.ndarray,
        method: str = "airpls",
        **kwargs,
    ) -> Tuple[np.ndarray, Dict]:
        """
        Advanced baseline correction methods

        Args:
            wavenumber: Wavenumber array
            intensities: Intensity array
            method: Baseline correction method ('airpls', 'als', 'polynomial', 'rolling_ball')
            **kwargs: Method-specific parameters

        Returns:
            Corrected intensities and processing metadata
        """
        metadata = {
            "method": method,
            "original_range": (intensities.min(), intensities.max()),
        }
        corrected_intensities = intensities.copy()

        if method == "airpls":
            corrected_intensities = self._airpls_baseline(intensities, **kwargs)
        elif method == "als":
            corrected_intensities = self._als_baseline(intensities, **kwargs)
        elif method == "polynomial":
            degree = kwargs.get("degree", 3)
            coeffs = np.polyfit(wavenumber, intensities, degree)
            baseline = np.polyval(coeffs, wavenumber)
            corrected_intensities = intensities - baseline
            metadata["polynomial_degree"] = degree
        elif method == "rolling_ball":
            ball_radius = kwargs.get("radius", 50)
            corrected_intensities = self._rolling_ball_baseline(
                intensities, ball_radius
            )
            metadata["ball_radius"] = ball_radius

        self.preprocessing_log.append(f"Baseline correction: {method}")
        metadata["corrected_range"] = (
            corrected_intensities.min(),
            corrected_intensities.max(),
        )

        return corrected_intensities, metadata

    def _airpls_baseline(
        self, y: np.ndarray, lambda_: float = 1e4, itermax: int = 15
    ) -> np.ndarray:
        """
        Adaptive Iteratively Reweighted Penalized Least Squares baseline correction
        """
        m = len(y)
        D = sparse.diags([1, -2, 1], offsets=[0, -1, -2], shape=(m, m - 2))
        D = lambda_ * D.dot(D.transpose())
        w = np.ones(m)

        for i in range(itermax):
            W = sparse.spdiags(w, 0, m, m)
            Z = W + D
            z = spsolve(Z, w * y)
            d = y - z
            dn = d[d < 0]

            m_dn = np.mean(dn) if len(dn) > 0 else 0
            s_dn = np.std(dn) if len(dn) > 1 else 1

            wt = 1.0 / (1 + np.exp(2 * (d - (2 * s_dn - m_dn)) / s_dn))

            if np.linalg.norm(w - wt) / np.linalg.norm(w) < 1e-9:
                break
            w = wt

        z = spsolve(sparse.spdiags(w, 0, m, m) + D, w * y)
        return y - z

    def _als_baseline(
        self, y: np.ndarray, lambda_: float = 1e4, p: float = 0.001
    ) -> np.ndarray:
        """
        Asymmetric Least Squares baseline correction
        """
        m = len(y)
        D = sparse.diags([1, -2, 1], [0, -1, -2], shape=(m, m - 2))
        D_t_D = D.dot(D.transpose())
        w = np.ones(m)

        for _ in range(10):
            W = sparse.spdiags(w, 0, m, m)
            Z = W + lambda_ * D_t_D
            z = spsolve(Z, w * y)
            w = p * (y > z) + (1 - p) * (y < z)

        return y - z

    def _rolling_ball_baseline(self, y: np.ndarray, radius: int) -> np.ndarray:
        """
        Rolling ball baseline correction
        """
        n = len(y)
        baseline = np.zeros_like(y)

        for i in range(n):
            start = max(0, i - radius)
            end = min(n, i + radius + 1)
            baseline[i] = np.min(y[start:end])

        return y - baseline

    def normalization(
        self,
        wavenumbers: np.ndarray,
        intensities: np.ndarray,
        method: str = "vector",
        **kwargs,
    ) -> Tuple[np.ndarray, Dict]:
        """
        Advanced normalization methods for spectroscopy data

        Args:
            wavenumbers: Wavenumber array
            intensities: Intensity array
            method: Normalization method ('vector', 'min_max', 'standard', 'area', 'peak')
            **kwargs: Method-specific parameters

        Returns:
            Normalized intensities and processing metadata
        """
        normalized_intensities = intensities.copy()
        metadata = {"method": method, "original_std": np.std(intensities)}

        if method == "vector":
            norm = np.linalg.norm(intensities)
            normalized_intensities = intensities / norm if norm > 0 else intensities
            metadata["norm_value"] = norm
        elif method == "min_max":
            scaler = MinMaxScaler()
            normalized_intensities = scaler.fit_transform(
                intensities.reshape(-1, 1)
            ).flatten()
            metadata["min_value"] = scaler.data_min_[0]
            metadata["max_value"] = scaler.data_max_[0]
        elif method == "standard":
            scaler = StandardScaler()
            normalized_intensities = scaler.fit_transform(
                intensities.reshape(-1, 1)
            ).flatten()
            metadata["mean"] = scaler.mean_[0] if scaler.mean_ is not None else None
            metadata["std"] = scaler.scale_[0] if scaler.scale_ is not None else None
        elif method == "area":
            area = trapz(np.abs(intensities), wavenumbers)
            normalized_intensities = intensities / area if area > 0 else intensities
            metadata["area"] = area
        elif method == "peak":
            peak_idx = kwargs.get("peak_idx", np.argmax(np.abs(intensities)))
            peak_value = intensities[peak_idx]
            normalized_intensities = (
                intensities / peak_value if peak_value != 0 else intensities
            )
            metadata["peak_wavenumber"] = wavenumbers[peak_idx]
            metadata["peak_value"] = peak_value

        self.preprocessing_log.append(f"Normalization: {method}")
        metadata["normalized_std"] = np.std(normalized_intensities)

        return normalized_intensities, metadata

    def noise_reduction(
        self,
        wavenumbers: np.ndarray,
        intensities: np.ndarray,
        method: str = "savgol",
        **kwargs,
    ) -> Tuple[np.ndarray, Dict]:
        """
        Advanced noise reduction techniques

        Args:
            wavenumbers: Wavenumber array
            intensities: Intensity array
            method: Denoising method ('savgol', 'wiener', 'median', 'gaussian')
            **kwargs: Method-specific parameters

        Returns:
            Reduced intensities and processing metadata
        """
        denoised_intensities = intensities.copy()
        metadata = {
            "method": method,
            "original_noise_level": np.std(np.diff(intensities)),
        }

        if method == "savgol":
            window_length = kwargs.get("window_length", 11)
            polyorder = kwargs.get("polyorder", 3)

            if window_length % 2 == 0:
                window_length += 1
            window_length = max(window_length, polyorder + 1)
            window_length = min(window_length, len(intensities) - 1)

            if window_length >= 3:
                denoised_intensities = signal.savgol_filter(
                    intensities, window_length, polyorder
                )
                metadata["window_length"] = window_length
                metadata["polyorder"] = polyorder
        elif method == "gaussian":
            sigma = kwargs.get("sigma", 1.0)  # Default value for sigma
            denoised_intensities = gaussian_filter1d(intensities, sigma)
            metadata["sigma"] = sigma
        elif method == "median":
            kernel_size = kwargs.get("kernel_size", 5)
            denoised_intensities = signal.medfilt(intensities, kernel_size)
            metadata["kernel_size"] = kernel_size
        elif method == "wiener":
            noise_power = kwargs.get("noise_power", None)
            denoised_intensities = signal.wiener(intensities, noise=noise_power)
            metadata["noise_power"] = noise_power

        self.preprocessing_log.append(f"Noise reduction: {method}")
        metadata["final_noise_level"] = np.std(np.diff(denoised_intensities))

        return denoised_intensities, metadata

    def technique_specific_preprocessing(
        self, wavenumbers: np.ndarray, intensities: np.ndarray, technique: str
    ) -> tuple[np.ndarray, Dict]:
        """
        Apply technique-specific preprocessing optimizations

        Args:
            wavenumbers: Wavenumber array
            intensities: Intensity array
            technique: Spectroscopy technique

        Returns:
            Processed intensities and metadata
        """
        processed_intensities = intensities.copy()
        metadata = {"technique": technique, "optimizations_applied": []}

        if technique == SpectroscopyType.ATR_FTIR:
            processed_intensities = self._atr_correction(wavenumbers, intensities)
            metadata["optimizations_applied"].append("ATR_penetration_correction")
        elif technique == SpectroscopyType.RAMAN:
            processed_intensities = self._cosmic_ray_removal(intensities)
            metadata["optimizations_applied"].append("cosmic_ray_removal")
            processed_intensities = self._fluorescence_correction(
                wavenumbers, processed_intensities
            )
            metadata["optimizations_applied"].append("fluorescence_correction")
        elif technique == SpectroscopyType.FTIR:
            processed_intensities = self._atmospheric_correction(
                wavenumbers, intensities
            )
            metadata["optimizations_applied"].append("atmospheric_correction")

        self.preprocessing_log.append(f"Technique-specific preprocessing: {technique}")
        return processed_intensities, metadata

    def _atr_correction(
        self, wavenumbers: np.ndarray, intensities: np.ndarray
    ) -> np.ndarray:
        """
        Apply ATR correction for wavelength-dependant penetration depth
        """
        correction_factor = np.sqrt(wavenumbers / np.max(wavenumbers))
        return intensities * correction_factor

    def _cosmic_ray_removal(
        self, intensities: np.ndarray, threshold: float = 3.0
    ) -> np.ndarray:
        """
        Remove cosmic ray spikes from Raman spectra
        """
        diff = np.abs(np.diff(intensities, prepend=intensities[0]))
        mean_diff = np.mean(diff)
        std_diff = np.std(diff)

        spikes = diff > (mean_diff + threshold * std_diff)
        corrected = intensities.copy()

        for i in np.where(spikes)[0]:
            if i > 0 and i < len(corrected) - 1:
                corrected[i] = (corrected[i - 1] + corrected[i + 1]) / 2

        return corrected

    def _fluorescence_correction(
        self, wavenumbers: np.ndarray, intensities: np.ndarray
    ) -> np.ndarray:
        """
        Remove fluorescence from Raman spectra
        """
        try:
            coeffs = np.polyfit(wavenumbers, intensities, deg=3)
            background = np.polyval(coeffs, wavenumbers)
            return intensities - background
        except np.linalg.LinAlgError:
            return intensities

    def _atmospheric_correction(
        self, wavenumbers: np.ndarray, intensities: np.ndarray
    ) -> np.ndarray:
        """
        Correct for atmospheric CO2 and water vapor absorption
        """
        corrected = intensities.copy()
        co2_mask = (wavenumbers >= 2350) & (wavenumbers <= 2380)
        if np.any(co2_mask):
            non_co2_idx = ~co2_mask
            if np.any(non_co2_idx):
                interp_func = interp1d(
                    wavenumbers[non_co2_idx],
                    corrected[non_co2_idx],
                    kind="linear",
                    bounds_error=False,
                    fill_value="extrapolate",
                )
                corrected[co2_mask] = interp_func(wavenumbers[co2_mask])

        return corrected


class MultiModalSpectroscopyEngine:
    """Engine for handling multi-modal spectrscopy data fusion."""

    def __init__(self):
        self.preprocessor = AdvancedPreprocessor()
        self.registered_techniques = {}
        self.fusion_strategies = [
            "concatenation",
            "weighted_average",
            "pca_fusion",
            "attention_fusion",
        ]

    def register_spectrum(
        self,
        wavenumbers: np.ndarray,
        intensities: np.ndarray,
        technique: str,
        metadata: Optional[Dict] = None,
    ) -> str:
        """
        Register a spectrum for multi-modal analysis

        Args:
            wavenumbers: Wavenumber array
            intensities: Intensity array
            technique: Spectroscopy technique type
            metadata: Additional metadata for the spectrum

        Returns:
            Spectrum ID for tracking
        """
        spectrum_id = f"{technique}_{len(self.registered_techniques)}"

        self.registered_techniques[spectrum_id] = {
            "wavenumbers": wavenumbers,
            "intensities": intensities,
            "technique": technique,
            "metadata": metadata or {},
            "characteristics": SPECTRAL_CHARACTERISTICS.get(technique),
        }

        return spectrum_id

    def preprocess_spectrum(
        self, spectrum_id: str, preprocessing_config: Optional[Dict] = None
    ) -> Dict:
        """
        Apply comprehensive preprocessing to a registered spectrum

        Args:
            spectrum_id: ID of registered spectrum
            preprocessing_config: Configuration for preprocessing steps

        Returns:
            Processing results and metadata
        """
        if spectrum_id not in self.registered_techniques:
            raise ValueError(f"Spectrum with ID {spectrum_id} not found.")

        spectrum_data = self.registered_techniques[spectrum_id]
        wavenumbers = spectrum_data["wavenumbers"]
        intensities = spectrum_data["intensities"]
        technique = spectrum_data["technique"]

        config = preprocessing_config or {}

        processed_intensities = intensities.copy()
        processing_metadata = {"steps_applied": [], "step_metadata": {}}

        if config.get("baseline_correction", True):
            method = config.get("baseline_method", "airpls")
            processed_intensities, baseline_metadata = (
                self.preprocessor.baseline_correction(
                    wavenumbers, processed_intensities, method=method
                )
            )
            processing_metadata["steps_applied"].append("baseline_correction")
            processing_metadata["step_metadata"][
                "baseline_correction"
            ] = baseline_metadata

        processed_intensities, technique_meta = (
            self.preprocessor.technique_specific_preprocessing(
                wavenumbers, processed_intensities, technique
            )
        )
        processing_metadata["steps_applied"].append("technique_specific")
        processing_metadata["step_metadata"]["technique_specific"] = technique_meta

        if config.get("noise_reduction", True):
            method = config.get("noise_method", "savgol")
            processed_intensities, noise_meta = self.preprocessor.noise_reduction(
                wavenumbers, processed_intensities, method=method
            )
            processing_metadata["steps_applied"].append("noise_reduction")
            processing_metadata["step_metadata"]["noise_reduction"] = noise_meta

        if config.get("normalization", True):
            method = config.get("norm_method", "vector")
            processed_intensities, norm_meta = self.preprocessor.normalization(
                wavenumbers, processed_intensities, method=method
            )
            processing_metadata["steps_applied"].append("normalization")
            processing_metadata["step_metadata"]["normalization"] = norm_meta

        self.registered_techniques[spectrum_id][
            "processed_intensities"
        ] = processed_intensities
        self.registered_techniques[spectrum_id][
            "processing_metadata"
        ] = processing_metadata

        return {
            "spectrum_id": spectrum_id,
            "processed_intensities": processed_intensities,
            "processing_metadata": processing_metadata,
            "quality_score": self._calculate_quality_score(
                wavenumbers, processed_intensities
            ),
        }

    def fuse_spectra(
        self,
        spectrum_ids: List[str],
        fusion_strategy: str = "concatenation",
        target_wavenumber_range: Optional[Tuple[float, float]] = None,
    ) -> Dict:
        """Fuse multiple spectra using specified strategy

        Args:
            spectrum_ids: List of spectrum IDs to fuse
            fusion_strategy: Fusion strategy ('concatenation', 'weighted_average', etc.)
            target_wavenumber_range: Common wavenumber for fusion

        Returns:
            Fused spectrum data and processing metadata
        """
        if not all(sid in self.registered_techniques for sid in spectrum_ids):
            raise ValueError("Some spectrum IDs not found")

        spectra_data = [self.registered_techniques[sid] for sid in spectrum_ids]

        if fusion_strategy == "concatenation":
            return self._concatenation_fusion(spectra_data, target_wavenumber_range)
        elif fusion_strategy == "weighted_average":
            return self._weighted_average_fusion(spectra_data, target_wavenumber_range)
        elif fusion_strategy == "pca_fusion":
            return self._pca_fusion(spectra_data, target_wavenumber_range)
        elif fusion_strategy == "attention_fusion":
            return self._attention_fusion(spectra_data, target_wavenumber_range)
        else:
            raise ValueError(
                f"Unknown or unsupported fusion strategy: {fusion_strategy}"
            )

    def _interpolate_to_common_grid(
        self,
        spectra_data: List[Dict],
        target_range: Tuple[float, float],
        num_points: int = 1000,
    ) -> Tuple[np.ndarray, List[np.ndarray]]:
        """Interpolate all spectra to a common wavenumber grid"""
        common_wavenumbers = np.linspace(target_range[0], target_range[1], num_points)
        interpolated_intensities_list = []

        for spectrum in spectra_data:
            wavenumbers = spectrum["wavenumbers"]
            intensities = spectrum.get("processed_intensities", spectrum["intensities"])

            valid_range = (wavenumbers.min(), wavenumbers.max())
            mask = (common_wavenumbers >= valid_range[0]) & (
                common_wavenumbers <= valid_range[1]
            )

            interp_intensities = np.zeros_like(common_wavenumbers)
            if np.any(mask):
                interp_func = interp1d(
                    wavenumbers,
                    intensities,
                    kind="linear",
                    bounds_error=False,
                    fill_value=0,
                )
                interp_intensities[mask] = interp_func(common_wavenumbers[mask])

            interpolated_intensities_list.append(interp_intensities)

        return common_wavenumbers, interpolated_intensities_list

    def _concatenation_fusion(
        self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
    ) -> Dict:
        """Simple concatenation of spectra"""
        if target_range is None:
            min_wn = max(s["wavenumbers"].min() for s in spectra_data)
            max_wn = min(s["wavenumbers"].max() for s in spectra_data)
            target_range = (min_wn, max_wn)

        common_wn, interpolated_intensities = self._interpolate_to_common_grid(
            spectra_data, target_range
        )

        fused_intensities = np.concatenate(interpolated_intensities)
        fused_wavenumbers = np.tile(common_wn, len(spectra_data))

        return {
            "wavenumbers": fused_wavenumbers,
            "intensities": fused_intensities,
            "fusion_strategy": "concatenation",
            "source_techniques": [s["technique"] for s in spectra_data],
            "common_range": target_range,
        }

    def _weighted_average_fusion(
        self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
    ) -> Dict:
        """Weighted average fusion based on data quality"""
        if target_range is None:
            min_wn = max(s["wavenumbers"].min() for s in spectra_data)
            max_wn = min(s["wavenumbers"].max() for s in spectra_data)
            target_range = (min_wn, max_wn)

        common_wn, interpolated_intensities = self._interpolate_to_common_grid(
            spectra_data, target_range
        )

        weights = []
        for i, spectrum in enumerate(spectra_data):
            quality_score = self._calculate_quality_score(
                common_wn, interpolated_intensities[i]
            )
            weights.append(quality_score)

        weights = np.array(weights)
        weights_sum = np.sum(weights)
        weights = (
            weights / weights_sum
            if weights_sum > 0
            else np.full_like(weights, 1.0 / len(weights))
        )

        fused_intensities = np.zeros_like(common_wn)
        for i, intensities in enumerate(interpolated_intensities):
            fused_intensities += weights[i] * intensities

        return {
            "wavenumbers": common_wn,
            "intensities": fused_intensities,
            "fusion_strategy": "weighted_average",
            "weights": weights.tolist(),
            "source_techniques": [s["technique"] for s in spectra_data],
            "common_range": target_range,
        }

    def _pca_fusion(
        self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
    ) -> Dict:
        """PCA-based fusion to extract common features"""
        if target_range is None:
            min_wn = max(s["wavenumbers"].min() for s in spectra_data)
            max_wn = min(s["wavenumbers"].max() for s in spectra_data)
            target_range = (min_wn, max_wn)

        common_wn, interpolated_intensities = self._interpolate_to_common_grid(
            spectra_data, target_range
        )

        spectra_matrix = np.vstack(interpolated_intensities)

        n_components = min(len(spectra_data), 3)
        pca = PCA(n_components=n_components)
        pca.fit(spectra_matrix.T)  # Fit on features (wavenumbers)

        fused_intensities = np.dot(pca.explained_variance_ratio_, pca.components_)

        return {
            "wavenumbers": common_wn,
            "intensities": fused_intensities,
            "fusion_strategy": "pca_fusion",
            "explained_variance_ratio": pca.explained_variance_ratio_.tolist(),
            "n_components": n_components,
            "source_techniques": [s["technique"] for s in spectra_data],
            "common_range": target_range,
        }

    def _attention_fusion(
        self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
    ) -> Dict:
        """Attention-based fusion using a simple neural attention-like mechanism"""
        if target_range is None:
            min_wn = max(s["wavenumbers"].min() for s in spectra_data)
            max_wn = min(s["wavenumbers"].max() for s in spectra_data)
            target_range = (min_wn, max_wn)

        common_wn, interpolated_intensities = self._interpolate_to_common_grid(
            spectra_data, target_range
        )

        attention_scores = []
        for intensities in interpolated_intensities:
            variance = np.var(intensities)
            quality = self._calculate_quality_score(common_wn, intensities)
            attention_scores.append(variance * quality)

        attention_scores = np.array(attention_scores)
        exp_scores = np.exp(
            attention_scores - np.max(attention_scores)
        )  # Softmax for stability
        attention_weights = exp_scores / np.sum(exp_scores)

        fused_intensities = np.zeros_like(common_wn)
        for i, intensities in enumerate(interpolated_intensities):
            fused_intensities += attention_weights[i] * intensities

        return {
            "wavenumbers": common_wn,
            "intensities": fused_intensities,
            "fusion_strategy": "attention_fusion",
            "attention_weights": attention_weights.tolist(),
            "source_techniques": [s["technique"] for s in spectra_data],
            "common_range": target_range,
        }

    def _calculate_quality_score(
        self, wavenumbers: np.ndarray, intensities: np.ndarray
    ) -> float:
        """Calculate spectral quality score based on signal-to-noise ratio and other metrics"""
        try:
            signal_power = np.var(intensities)
            if len(intensities) < 2:
                return 0.0
            noise_power = np.var(np.diff(intensities))
            snr = signal_power / noise_power if noise_power > 0 else 1e6

            peaks, properties = find_peaks(
                intensities, prominence=0.1 * np.std(intensities)
            )
            peak_prominence = (
                np.mean(properties["prominences"]) if len(peaks) > 0 else 0
            )

            baseline_stability = 1.0 / (
                1.0 + np.std(intensities[:10]) + np.std(intensities[-10:])
            )

            quality_score = (
                np.log10(max(snr, 1)) * 0.5
                + peak_prominence * 0.3
                + baseline_stability * 0.2
            )

            return max(0, min(1, quality_score))
        except Exception:
            return 0.5

    def get_technique_recommendations(self, sample_type: str) -> List[Dict]:
        """
        Recommend optimal spectroscopy techniques for a given sample type

        Args:
            sample_type: Type of sample (e.g., 'solid_polymer', 'liquid_polymer', 'thin_film')

        Returns:
            List of recommended techniques with rationale
        """
        recommendations = []

        if sample_type in ["solid_polymer", "polymer_pellets", "polymer_film"]:
            recommendations.extend(
                [
                    {
                        "technique": SpectroscopyType.ATR_FTIR,
                        "priority": "high",
                        "rationale": "Minimal sample preparation, direct solid contact analysis",
                        "characteristics": SPECTRAL_CHARACTERISTICS[
                            SpectroscopyType.ATR_FTIR
                        ],
                    },
                    {
                        "technique": SpectroscopyType.RAMAN,
                        "priority": "medium",
                        "rationale": "Complementary vibrational information, non-destructive",
                        "characteristics": SPECTRAL_CHARACTERISTICS[
                            SpectroscopyType.RAMAN
                        ],
                    },
                ]
            )
        elif sample_type in ["liquid_polymer", "polymer_solution"]:
            recommendations.extend(
                [
                    {
                        "technique": SpectroscopyType.FTIR,
                        "priority": "high",
                        "rationale": "Versatile for liquid samples, wide spectral range",
                        "characteristics": SPECTRAL_CHARACTERISTICS[
                            SpectroscopyType.FTIR
                        ],
                    },
                    {
                        "technique": SpectroscopyType.RAMAN,
                        "priority": "high",
                        "rationale": "Water compatible, molecular vibrations",
                        "characteristics": SPECTRAL_CHARACTERISTICS[
                            SpectroscopyType.RAMAN
                        ],
                    },
                ]
            )
        elif sample_type in ["weathered_polymer", "aged_polymer"]:
            recommendations.extend(
                [
                    {
                        "technique": SpectroscopyType.ATR_FTIR,
                        "priority": "high",
                        "rationale": "Surface analysis for weathering products",
                        "characteristics": SPECTRAL_CHARACTERISTICS[
                            SpectroscopyType.ATR_FTIR
                        ],
                    },
                    {
                        "technique": SpectroscopyType.FTIR,
                        "priority": "medium",
                        "rationale": "Bulk analysis for degradation assessment",
                        "characteristics": SPECTRAL_CHARACTERISTICS[
                            SpectroscopyType.FTIR
                        ],
                    },
                ]
            )

        return recommendations


""