dcrey7's picture
Update app.py
c374b8b verified
raw
history blame
20.7 kB
import os
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import requests
import io
import matplotlib.colors as mcolors
import cv2
from io import BytesIO
import urllib.request
import tempfile
import rasterio
from rasterio.plot import reshape_as_image
import warnings
warnings.filterwarnings("ignore")
# Try to import segmentation_models_pytorch
try:
import segmentation_models_pytorch as smp
smp_available = True
print("Successfully imported segmentation_models_pytorch")
except ImportError:
smp_available = False
print("Warning: segmentation_models_pytorch not available, will try to install it")
import subprocess
try:
subprocess.check_call([
"pip", "install", "segmentation-models-pytorch"
])
import segmentation_models_pytorch as smp
smp_available = True
print("Successfully installed and imported segmentation_models_pytorch")
except:
print("Failed to install segmentation_models_pytorch")
# Try to import albumentations if needed for preprocessing
try:
import albumentations as A
albumentations_available = True
print("Successfully imported albumentations")
except ImportError:
albumentations_available = False
print("Warning: albumentations not available, will use OpenCV for transforms")
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Initialize the model
if smp_available:
# Define the DeepLabV3+ model using smp
model = smp.DeepLabV3Plus(
encoder_name="resnet34", # Using ResNet34 backbone as in your training
encoder_weights=None, # We'll load your custom weights
in_channels=3, # RGB input
classes=1, # Binary segmentation
)
else:
# Fallback to a simple model that won't actually work but allows the UI to load
print("Warning: Using a placeholder model that won't produce correct predictions.")
from torch import nn
class PlaceholderModel(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(3, 1, 3, padding=1)
def forward(self, x):
return self.conv(x)
model = PlaceholderModel()
# Download model weights from HuggingFace
MODEL_REPO = "dcrey7/wetlands_segmentation_deeplabsv3plus"
MODEL_FILENAME = "DeepLabV3plus_best_model.pth"
def download_model_weights():
"""Download model weights from HuggingFace repository"""
try:
os.makedirs('weights', exist_ok=True)
local_path = os.path.join('weights', MODEL_FILENAME)
# Check if weights are already downloaded
if os.path.exists(local_path):
print(f"Model weights already downloaded at {local_path}")
return local_path
# Download weights
print(f"Downloading model weights from {MODEL_REPO}...")
url = f"https://huggingface.co/{MODEL_REPO}/resolve/main/{MODEL_FILENAME}"
urllib.request.urlretrieve(url, local_path)
print(f"Model weights downloaded to {local_path}")
return local_path
except Exception as e:
print(f"Error downloading model weights: {e}")
return None
# Load the model weights
weights_path = download_model_weights()
if weights_path:
try:
# Try to load with strict=False to allow for some parameter mismatches
state_dict = torch.load(weights_path, map_location=device)
# Check if we need to modify the state dict keys
if all(key.startswith('encoder.') or key.startswith('decoder.') for key in list(state_dict.keys())[:5]):
print("Model weights use encoder/decoder format, loading directly")
model.load_state_dict(state_dict, strict=False)
else:
print("Attempting to adapt state dict to match model architecture")
# This is a placeholder for state dict adaptation if needed
model.load_state_dict(state_dict, strict=False)
print("Model weights loaded successfully")
except Exception as e:
print(f"Error loading model weights: {e}")
else:
print("No weights available. Model will not produce valid predictions.")
model.to(device)
model.eval()
def read_tiff_image(tiff_path):
"""
Read a TIFF image using rasterio, focusing on RGB bands
This matches your training data loading approach
"""
try:
# Read the image using rasterio (get RGB channels)
with rasterio.open(tiff_path) as src:
# Check if we have enough bands
if src.count >= 3:
red = src.read(1)
green = src.read(2)
blue = src.read(3)
# Stack to create RGB image
image = np.dstack((red, green, blue)).astype(np.float32)
# Normalize to [0, 1]
if image.max() > 0:
image = image / image.max()
return image
else:
# If less than 3 bands, handle accordingly
print(f"Warning: TIFF file has only {src.count} bands, RGB expected")
bands = [src.read(i+1) for i in range(src.count)]
# If only one band, duplicate to create RGB
if len(bands) == 1:
image = np.dstack((bands[0], bands[0], bands[0]))
else:
# Use available bands and pad with zeros if needed
while len(bands) < 3:
bands.append(np.zeros_like(bands[0]))
image = np.dstack(bands[:3]) # Use first 3 bands
# Normalize
if image.max() > 0:
image = image / image.max()
return image
except Exception as e:
print(f"Error reading TIFF file: {e}")
return None
def read_tiff_mask(mask_path):
"""
Read a TIFF mask using rasterio
This matches your training data loading approach
"""
try:
# Read mask
with rasterio.open(mask_path) as src:
mask = src.read(1).astype(np.uint8)
return mask
except Exception as e:
print(f"Error reading mask file: {e}")
return None
def preprocess_image(image, target_size=(128, 128)):
"""
Preprocess an image for inference
"""
# If image is a TIFF path, read it
if isinstance(image, str) and (image.lower().endswith('.tif') or image.lower().endswith('.tiff')):
image = read_tiff_image(image)
if image is None:
return None, None
# Convert to numpy array if PIL image
elif isinstance(image, Image.Image):
image = np.array(image)
# Ensure RGB format
if len(image.shape) == 2: # Grayscale
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 4: # RGBA
image = image[:, :, :3]
# Make a copy for display
display_image = (image * 255).astype(np.uint8) if image.max() <= 1.0 else image.copy()
# Resize image to the target size
if albumentations_available:
# Use albumentations to match training preprocessing
aug = A.Compose([
A.PadIfNeeded(min_height=target_size[0], min_width=target_size[1],
border_mode=cv2.BORDER_CONSTANT, value=0),
A.CenterCrop(height=target_size[0], width=target_size[1])
])
augmented = aug(image=image)
image_resized = augmented['image']
else:
# Fallback to OpenCV
image_resized = cv2.resize(image, target_size, interpolation=cv2.INTER_LINEAR)
# Convert to tensor [C, H, W]
image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0)
return image_tensor, display_image
def preprocess_uploaded_file(file_obj, target_size=(128, 128)):
"""
Process an uploaded file (could be image or TIFF)
"""
try:
# Save to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.tif') as temp_file:
temp_path = temp_file.name
# Write the content to the temp file
if hasattr(file_obj, 'read'):
# If it's a file-like object
temp_file.write(file_obj.read())
elif isinstance(file_obj, (str, bytes)):
# If it's a string path or bytes
if isinstance(file_obj, str):
with open(file_obj, 'rb') as f:
temp_file.write(f.read())
else:
temp_file.write(file_obj)
# Check if it's a TIFF file
if temp_path.lower().endswith(('.tif', '.tiff')):
# Read as TIFF
image = read_tiff_image(temp_path)
if image is None:
os.unlink(temp_path)
return None, None
# Make a copy for display
display_image = (image * 255).astype(np.uint8) if image.max() <= 1.0 else image.copy()
# Resize/preprocess
if albumentations_available:
aug = A.Compose([
A.PadIfNeeded(min_height=target_size[0], min_width=target_size[1],
border_mode=cv2.BORDER_CONSTANT, value=0),
A.CenterCrop(height=target_size[0], width=target_size[1])
])
augmented = aug(image=image)
image_resized = augmented['image']
else:
image_resized = cv2.resize(image, target_size, interpolation=cv2.INTER_LINEAR)
# Convert to tensor
image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0)
else:
# Try to open as a regular image
try:
pil_image = Image.open(temp_path)
image_tensor, display_image = preprocess_image(pil_image, target_size)
except Exception as e:
print(f"Error opening as regular image: {e}")
os.unlink(temp_path)
return None, None
# Clean up
os.unlink(temp_path)
return image_tensor, display_image
except Exception as e:
print(f"Error processing uploaded file: {e}")
import traceback
traceback.print_exc()
return None, None
def preprocess_mask(mask_input, target_size=(128, 128)):
"""
Preprocess a ground truth mask
"""
try:
# If mask is a file path or file-like object, process it
if isinstance(mask_input, str) or hasattr(mask_input, 'read'):
# Save to temp file if it's a file-like object
if hasattr(mask_input, 'read'):
with tempfile.NamedTemporaryFile(delete=False, suffix='.tif') as temp_file:
temp_path = temp_file.name
temp_file.write(mask_input.read())
mask_path = temp_path
else:
mask_path = mask_input
# Check if it's a TIFF
if mask_path.lower().endswith(('.tif', '.tiff')):
mask = read_tiff_mask(mask_path)
if mask is None:
if hasattr(mask_input, 'read'):
os.unlink(temp_path)
return None
else:
# Try as regular image
try:
mask = np.array(Image.open(mask_path))
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
except Exception as e:
print(f"Error opening mask as image: {e}")
if hasattr(mask_input, 'read'):
os.unlink(temp_path)
return None
# Clean up if temp file
if hasattr(mask_input, 'read'):
os.unlink(temp_path)
# Convert to numpy array if PIL image
elif isinstance(mask_input, Image.Image):
mask = np.array(mask_input)
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
# Already numpy array
else:
mask = mask_input
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
# Resize mask to target size
if albumentations_available:
aug = A.Compose([
A.PadIfNeeded(min_height=target_size[0], min_width=target_size[1],
border_mode=cv2.BORDER_CONSTANT, value=0),
A.CenterCrop(height=target_size[0], width=target_size[1])
])
augmented = aug(image=mask)
mask_resized = augmented['image']
else:
mask_resized = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
# Binarize the mask (0: background, 1: wetland)
mask_binary = (mask_resized > 127).astype(np.uint8)
return mask_binary
except Exception as e:
print(f"Error preprocessing mask: {e}")
import traceback
traceback.print_exc()
return None
def predict_segmentation(image_tensor):
"""
Run inference on the model
"""
try:
image_tensor = image_tensor.to(device)
with torch.no_grad():
output = model(image_tensor)
# Handle different model output formats
if isinstance(output, dict):
output = output['out']
if output.shape[1] > 1: # Multi-class output
pred = torch.argmax(output, dim=1).squeeze(0).cpu().numpy()
else: # Binary output (from smp models)
pred = (torch.sigmoid(output) > 0.5).squeeze().cpu().numpy().astype(np.uint8)
return pred
except Exception as e:
print(f"Error during prediction: {e}")
import traceback
traceback.print_exc()
return None
def calculate_metrics(pred_mask, gt_mask):
"""
Calculate evaluation metrics between prediction and ground truth
"""
# Ensure binary masks
pred_binary = (pred_mask > 0).astype(np.uint8)
gt_binary = (gt_mask > 0).astype(np.uint8)
# Calculate intersection and union
intersection = np.logical_and(pred_binary, gt_binary).sum()
union = np.logical_or(pred_binary, gt_binary).sum()
# Calculate IoU
iou = intersection / union if union > 0 else 0
# Calculate precision and recall
true_positive = intersection
false_positive = pred_binary.sum() - true_positive
false_negative = gt_binary.sum() - true_positive
precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0
recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0
# Calculate F1 score
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0
metrics = {
"IoU": float(iou),
"Precision": float(precision),
"Recall": float(recall),
"F1 Score": float(f1)
}
return metrics
def process_images(input_image=None, input_tiff=None, gt_mask=None):
"""
Process input images and generate predictions
"""
try:
# Check if we have input
if input_image is None and input_tiff is None:
return None, "Please upload an image or TIFF file."
# Process the input image
if input_tiff is not None:
# Process uploaded TIFF file
image_tensor, display_image = preprocess_uploaded_file(input_tiff)
else:
# Process regular image
image_tensor, display_image = preprocess_image(input_image)
if image_tensor is None or display_image is None:
return None, "Failed to process the input image."
# Get prediction
pred_mask = predict_segmentation(image_tensor)
if pred_mask is None:
return None, "Failed to generate prediction."
# Process ground truth mask if provided
gt_mask_processed = None
metrics_text = ""
if gt_mask is not None:
gt_mask_processed = preprocess_mask(gt_mask)
if gt_mask_processed is not None:
metrics = calculate_metrics(pred_mask, gt_mask_processed)
metrics_text = "\n".join([f"{k}: {v:.4f}" for k, v in metrics.items()])
# Create visualization
fig = plt.figure(figsize=(12, 6))
if gt_mask_processed is not None:
# Show original, ground truth, and prediction
plt.subplot(1, 3, 1)
plt.imshow(display_image)
plt.title("Input Image")
plt.axis('off')
plt.subplot(1, 3, 2)
plt.imshow(gt_mask_processed, cmap='binary')
plt.title("Ground Truth")
plt.axis('off')
plt.subplot(1, 3, 3)
plt.imshow(pred_mask, cmap='binary')
plt.title("Prediction")
plt.axis('off')
else:
# Show original and prediction
plt.subplot(1, 2, 1)
plt.imshow(display_image)
plt.title("Input Image")
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(pred_mask, cmap='binary')
plt.title("Predicted Wetlands")
plt.axis('off')
# Calculate wetland percentage
wetland_percentage = np.mean(pred_mask) * 100
# Add metrics info
result_text = f"Wetland Coverage: {wetland_percentage:.2f}%"
if metrics_text:
result_text += f"\n\nEvaluation Metrics:\n{metrics_text}"
# Convert figure to image
buf = BytesIO()
plt.tight_layout()
plt.savefig(buf, format='png', dpi=150)
buf.seek(0)
result_image = Image.open(buf)
plt.close(fig)
return result_image, result_text
except Exception as e:
print(f"Error in processing: {e}")
import traceback
traceback.print_exc()
return None, f"Error: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Wetlands Segmentation from Satellite Imagery") as demo:
gr.Markdown("# Wetlands Segmentation from Satellite Imagery")
gr.Markdown("Upload a satellite image or TIFF file to identify wetland areas. Optionally, you can also upload a ground truth mask for evaluation.")
with gr.Row():
with gr.Column():
# Input options
gr.Markdown("### Input")
with gr.Tab("Upload Image"):
input_image = gr.Image(label="Upload Satellite Image", type="numpy")
with gr.Tab("Upload TIFF"):
input_tiff = gr.File(label="Upload TIFF File", file_types=[".tif", ".tiff"])
gt_mask = gr.Image(label="Ground Truth Mask (Optional)", type="numpy")
process_btn = gr.Button("Analyze Image", variant="primary")
with gr.Column():
# Output
gr.Markdown("### Results")
output_image = gr.Image(label="Segmentation Results", type="pil")
output_text = gr.Textbox(label="Statistics", lines=6)
# Information about the model
gr.Markdown("### About this model")
gr.Markdown("""
This application uses a DeepLabv3+ model trained to segment wetland areas in satellite imagery.
**Model Details:**
- Architecture: DeepLabv3+ with ResNet-34
- Input: RGB satellite imagery
- Output: Binary segmentation mask (Wetland vs Background)
- Resolution: 128×128 pixels
**Tips for best results:**
- The model works best with RGB satellite imagery
- For optimal results, use images with similar characteristics to those used in training
- The model focuses on identifying wetland regions in natural landscapes
**Repository:** [dcrey7/wetlands_segmentation_deeplabsv3plus](https://huggingface.co/dcrey7/wetlands_segmentation_deeplabsv3plus)
""")
# Set up event handlers
process_btn.click(
fn=process_images,
inputs=[input_image, input_tiff, gt_mask],
outputs=[output_image, output_text]
)
# Launch the app
demo.launch()