import os import gradio as gr import torch import numpy as np import matplotlib.pyplot as plt from PIL import Image import requests import io import matplotlib.colors as mcolors import cv2 from io import BytesIO import urllib.request import tempfile import rasterio from rasterio.plot import reshape_as_image import warnings warnings.filterwarnings("ignore") # Try to import segmentation_models_pytorch try: import segmentation_models_pytorch as smp smp_available = True print("Successfully imported segmentation_models_pytorch") except ImportError: smp_available = False print("Warning: segmentation_models_pytorch not available, will try to install it") import subprocess try: subprocess.check_call([ "pip", "install", "segmentation-models-pytorch" ]) import segmentation_models_pytorch as smp smp_available = True print("Successfully installed and imported segmentation_models_pytorch") except: print("Failed to install segmentation_models_pytorch") # Try to import albumentations if needed for preprocessing try: import albumentations as A albumentations_available = True print("Successfully imported albumentations") except ImportError: albumentations_available = False print("Warning: albumentations not available, will use OpenCV for transforms") # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Initialize the model if smp_available: # Define the DeepLabV3+ model using smp model = smp.DeepLabV3Plus( encoder_name="resnet34", # Using ResNet34 backbone as in your training encoder_weights=None, # We'll load your custom weights in_channels=3, # RGB input classes=1, # Binary segmentation ) else: # Fallback to a simple model that won't actually work but allows the UI to load print("Warning: Using a placeholder model that won't produce correct predictions.") from torch import nn class PlaceholderModel(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(3, 1, 3, padding=1) def forward(self, x): return self.conv(x) model = PlaceholderModel() # Download model weights from HuggingFace MODEL_REPO = "dcrey7/wetlands_segmentation_deeplabsv3plus" MODEL_FILENAME = "DeepLabV3plus_best_model.pth" def download_model_weights(): """Download model weights from HuggingFace repository""" try: os.makedirs('weights', exist_ok=True) local_path = os.path.join('weights', MODEL_FILENAME) # Check if weights are already downloaded if os.path.exists(local_path): print(f"Model weights already downloaded at {local_path}") return local_path # Download weights print(f"Downloading model weights from {MODEL_REPO}...") url = f"https://huggingface.co/{MODEL_REPO}/resolve/main/{MODEL_FILENAME}" urllib.request.urlretrieve(url, local_path) print(f"Model weights downloaded to {local_path}") return local_path except Exception as e: print(f"Error downloading model weights: {e}") return None # Load the model weights weights_path = download_model_weights() if weights_path: try: # Try to load with strict=False to allow for some parameter mismatches state_dict = torch.load(weights_path, map_location=device) # Check if we need to modify the state dict keys if all(key.startswith('encoder.') or key.startswith('decoder.') for key in list(state_dict.keys())[:5]): print("Model weights use encoder/decoder format, loading directly") model.load_state_dict(state_dict, strict=False) else: print("Attempting to adapt state dict to match model architecture") # This is a placeholder for state dict adaptation if needed model.load_state_dict(state_dict, strict=False) print("Model weights loaded successfully") except Exception as e: print(f"Error loading model weights: {e}") else: print("No weights available. Model will not produce valid predictions.") model.to(device) model.eval() def read_tiff_image(tiff_path): """ Read a TIFF image using rasterio, focusing on RGB bands This matches your training data loading approach """ try: # Read the image using rasterio (get RGB channels) with rasterio.open(tiff_path) as src: # Check if we have enough bands if src.count >= 3: red = src.read(1) green = src.read(2) blue = src.read(3) # Stack to create RGB image image = np.dstack((red, green, blue)).astype(np.float32) # Normalize to [0, 1] if image.max() > 0: image = image / image.max() return image else: # If less than 3 bands, handle accordingly print(f"Warning: TIFF file has only {src.count} bands, RGB expected") bands = [src.read(i+1) for i in range(src.count)] # If only one band, duplicate to create RGB if len(bands) == 1: image = np.dstack((bands[0], bands[0], bands[0])) else: # Use available bands and pad with zeros if needed while len(bands) < 3: bands.append(np.zeros_like(bands[0])) image = np.dstack(bands[:3]) # Use first 3 bands # Normalize if image.max() > 0: image = image / image.max() return image except Exception as e: print(f"Error reading TIFF file: {e}") return None def read_tiff_mask(mask_path): """ Read a TIFF mask using rasterio This matches your training data loading approach """ try: # Read mask with rasterio.open(mask_path) as src: mask = src.read(1).astype(np.uint8) return mask except Exception as e: print(f"Error reading mask file: {e}") return None def preprocess_image(image, target_size=(128, 128)): """ Preprocess an image for inference """ # If image is a TIFF path, read it if isinstance(image, str) and (image.lower().endswith('.tif') or image.lower().endswith('.tiff')): image = read_tiff_image(image) if image is None: return None, None # Convert to numpy array if PIL image elif isinstance(image, Image.Image): image = np.array(image) # Ensure RGB format if len(image.shape) == 2: # Grayscale image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) elif image.shape[2] == 4: # RGBA image = image[:, :, :3] # Make a copy for display display_image = (image * 255).astype(np.uint8) if image.max() <= 1.0 else image.copy() # Resize image to the target size if albumentations_available: # Use albumentations to match training preprocessing aug = A.Compose([ A.PadIfNeeded(min_height=target_size[0], min_width=target_size[1], border_mode=cv2.BORDER_CONSTANT, value=0), A.CenterCrop(height=target_size[0], width=target_size[1]) ]) augmented = aug(image=image) image_resized = augmented['image'] else: # Fallback to OpenCV image_resized = cv2.resize(image, target_size, interpolation=cv2.INTER_LINEAR) # Convert to tensor [C, H, W] image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0) return image_tensor, display_image def preprocess_uploaded_file(file_obj, target_size=(128, 128)): """ Process an uploaded file (could be image or TIFF) """ try: # Save to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix='.tif') as temp_file: temp_path = temp_file.name # Write the content to the temp file if hasattr(file_obj, 'read'): # If it's a file-like object temp_file.write(file_obj.read()) elif isinstance(file_obj, (str, bytes)): # If it's a string path or bytes if isinstance(file_obj, str): with open(file_obj, 'rb') as f: temp_file.write(f.read()) else: temp_file.write(file_obj) # Check if it's a TIFF file if temp_path.lower().endswith(('.tif', '.tiff')): # Read as TIFF image = read_tiff_image(temp_path) if image is None: os.unlink(temp_path) return None, None # Make a copy for display display_image = (image * 255).astype(np.uint8) if image.max() <= 1.0 else image.copy() # Resize/preprocess if albumentations_available: aug = A.Compose([ A.PadIfNeeded(min_height=target_size[0], min_width=target_size[1], border_mode=cv2.BORDER_CONSTANT, value=0), A.CenterCrop(height=target_size[0], width=target_size[1]) ]) augmented = aug(image=image) image_resized = augmented['image'] else: image_resized = cv2.resize(image, target_size, interpolation=cv2.INTER_LINEAR) # Convert to tensor image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0) else: # Try to open as a regular image try: pil_image = Image.open(temp_path) image_tensor, display_image = preprocess_image(pil_image, target_size) except Exception as e: print(f"Error opening as regular image: {e}") os.unlink(temp_path) return None, None # Clean up os.unlink(temp_path) return image_tensor, display_image except Exception as e: print(f"Error processing uploaded file: {e}") import traceback traceback.print_exc() return None, None def preprocess_mask(mask_input, target_size=(128, 128)): """ Preprocess a ground truth mask """ try: # If mask is a file path or file-like object, process it if isinstance(mask_input, str) or hasattr(mask_input, 'read'): # Save to temp file if it's a file-like object if hasattr(mask_input, 'read'): with tempfile.NamedTemporaryFile(delete=False, suffix='.tif') as temp_file: temp_path = temp_file.name temp_file.write(mask_input.read()) mask_path = temp_path else: mask_path = mask_input # Check if it's a TIFF if mask_path.lower().endswith(('.tif', '.tiff')): mask = read_tiff_mask(mask_path) if mask is None: if hasattr(mask_input, 'read'): os.unlink(temp_path) return None else: # Try as regular image try: mask = np.array(Image.open(mask_path)) if len(mask.shape) == 3: mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY) except Exception as e: print(f"Error opening mask as image: {e}") if hasattr(mask_input, 'read'): os.unlink(temp_path) return None # Clean up if temp file if hasattr(mask_input, 'read'): os.unlink(temp_path) # Convert to numpy array if PIL image elif isinstance(mask_input, Image.Image): mask = np.array(mask_input) if len(mask.shape) == 3: mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY) # Already numpy array else: mask = mask_input if len(mask.shape) == 3: mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY) # Resize mask to target size if albumentations_available: aug = A.Compose([ A.PadIfNeeded(min_height=target_size[0], min_width=target_size[1], border_mode=cv2.BORDER_CONSTANT, value=0), A.CenterCrop(height=target_size[0], width=target_size[1]) ]) augmented = aug(image=mask) mask_resized = augmented['image'] else: mask_resized = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST) # Binarize the mask (0: background, 1: wetland) mask_binary = (mask_resized > 127).astype(np.uint8) return mask_binary except Exception as e: print(f"Error preprocessing mask: {e}") import traceback traceback.print_exc() return None def predict_segmentation(image_tensor): """ Run inference on the model """ try: image_tensor = image_tensor.to(device) with torch.no_grad(): output = model(image_tensor) # Handle different model output formats if isinstance(output, dict): output = output['out'] if output.shape[1] > 1: # Multi-class output pred = torch.argmax(output, dim=1).squeeze(0).cpu().numpy() else: # Binary output (from smp models) pred = (torch.sigmoid(output) > 0.5).squeeze().cpu().numpy().astype(np.uint8) return pred except Exception as e: print(f"Error during prediction: {e}") import traceback traceback.print_exc() return None def calculate_metrics(pred_mask, gt_mask): """ Calculate evaluation metrics between prediction and ground truth """ # Ensure binary masks pred_binary = (pred_mask > 0).astype(np.uint8) gt_binary = (gt_mask > 0).astype(np.uint8) # Calculate intersection and union intersection = np.logical_and(pred_binary, gt_binary).sum() union = np.logical_or(pred_binary, gt_binary).sum() # Calculate IoU iou = intersection / union if union > 0 else 0 # Calculate precision and recall true_positive = intersection false_positive = pred_binary.sum() - true_positive false_negative = gt_binary.sum() - true_positive precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 # Calculate F1 score f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0 metrics = { "IoU": float(iou), "Precision": float(precision), "Recall": float(recall), "F1 Score": float(f1) } return metrics def process_images(input_image=None, input_tiff=None, gt_mask=None): """ Process input images and generate predictions """ try: # Check if we have input if input_image is None and input_tiff is None: return None, "Please upload an image or TIFF file." # Process the input image if input_tiff is not None: # Process uploaded TIFF file image_tensor, display_image = preprocess_uploaded_file(input_tiff) else: # Process regular image image_tensor, display_image = preprocess_image(input_image) if image_tensor is None or display_image is None: return None, "Failed to process the input image." # Get prediction pred_mask = predict_segmentation(image_tensor) if pred_mask is None: return None, "Failed to generate prediction." # Process ground truth mask if provided gt_mask_processed = None metrics_text = "" if gt_mask is not None: gt_mask_processed = preprocess_mask(gt_mask) if gt_mask_processed is not None: metrics = calculate_metrics(pred_mask, gt_mask_processed) metrics_text = "\n".join([f"{k}: {v:.4f}" for k, v in metrics.items()]) # Create visualization fig = plt.figure(figsize=(12, 6)) if gt_mask_processed is not None: # Show original, ground truth, and prediction plt.subplot(1, 3, 1) plt.imshow(display_image) plt.title("Input Image") plt.axis('off') plt.subplot(1, 3, 2) plt.imshow(gt_mask_processed, cmap='binary') plt.title("Ground Truth") plt.axis('off') plt.subplot(1, 3, 3) plt.imshow(pred_mask, cmap='binary') plt.title("Prediction") plt.axis('off') else: # Show original and prediction plt.subplot(1, 2, 1) plt.imshow(display_image) plt.title("Input Image") plt.axis('off') plt.subplot(1, 2, 2) plt.imshow(pred_mask, cmap='binary') plt.title("Predicted Wetlands") plt.axis('off') # Calculate wetland percentage wetland_percentage = np.mean(pred_mask) * 100 # Add metrics info result_text = f"Wetland Coverage: {wetland_percentage:.2f}%" if metrics_text: result_text += f"\n\nEvaluation Metrics:\n{metrics_text}" # Convert figure to image buf = BytesIO() plt.tight_layout() plt.savefig(buf, format='png', dpi=150) buf.seek(0) result_image = Image.open(buf) plt.close(fig) return result_image, result_text except Exception as e: print(f"Error in processing: {e}") import traceback traceback.print_exc() return None, f"Error: {str(e)}" # Create Gradio interface with gr.Blocks(title="Wetlands Segmentation from Satellite Imagery") as demo: gr.Markdown("# Wetlands Segmentation from Satellite Imagery") gr.Markdown("Upload a satellite image or TIFF file to identify wetland areas. Optionally, you can also upload a ground truth mask for evaluation.") with gr.Row(): with gr.Column(): # Input options gr.Markdown("### Input") with gr.Tab("Upload Image"): input_image = gr.Image(label="Upload Satellite Image", type="numpy") with gr.Tab("Upload TIFF"): input_tiff = gr.File(label="Upload TIFF File", file_types=[".tif", ".tiff"]) gt_mask = gr.Image(label="Ground Truth Mask (Optional)", type="numpy") process_btn = gr.Button("Analyze Image", variant="primary") with gr.Column(): # Output gr.Markdown("### Results") output_image = gr.Image(label="Segmentation Results", type="pil") output_text = gr.Textbox(label="Statistics", lines=6) # Information about the model gr.Markdown("### About this model") gr.Markdown(""" This application uses a DeepLabv3+ model trained to segment wetland areas in satellite imagery. **Model Details:** - Architecture: DeepLabv3+ with ResNet-34 - Input: RGB satellite imagery - Output: Binary segmentation mask (Wetland vs Background) - Resolution: 128×128 pixels **Tips for best results:** - The model works best with RGB satellite imagery - For optimal results, use images with similar characteristics to those used in training - The model focuses on identifying wetland regions in natural landscapes **Repository:** [dcrey7/wetlands_segmentation_deeplabsv3plus](https://huggingface.co/dcrey7/wetlands_segmentation_deeplabsv3plus) """) # Set up event handlers process_btn.click( fn=process_images, inputs=[input_image, input_tiff, gt_mask], outputs=[output_image, output_text] ) # Launch the app demo.launch()