File size: 21,380 Bytes
61fd66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e8b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c374b8b
 
 
 
 
 
 
66f27f5
 
 
 
 
 
 
 
 
 
 
c374b8b
61fd66a
 
 
 
 
a4e8b55
 
 
 
 
 
 
 
 
 
476cf4b
a4e8b55
 
 
 
 
 
 
 
61fd66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e8b55
9ee35b3
a4e8b55
 
 
 
 
 
 
 
 
61fd66a
 
 
a4e8b55
61fd66a
 
 
 
c374b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fd66a
 
 
 
66f27f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c374b8b
61fd66a
66f27f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fd66a
c374b8b
 
 
 
 
 
 
 
 
 
 
 
 
61fd66a
 
c374b8b
 
 
61fd66a
476cf4b
 
61fd66a
476cf4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f27f5
476cf4b
c374b8b
476cf4b
 
 
 
66f27f5
476cf4b
66f27f5
 
 
476cf4b
66f27f5
476cf4b
 
 
 
 
66f27f5
 
476cf4b
 
 
66f27f5
476cf4b
66f27f5
61fd66a
c374b8b
 
66f27f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c374b8b
 
61fd66a
66f27f5
c374b8b
 
61fd66a
 
66f27f5
476cf4b
c374b8b
476cf4b
 
 
 
c374b8b
66f27f5
476cf4b
 
 
 
 
 
 
 
 
 
c374b8b
66f27f5
 
 
c374b8b
66f27f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c374b8b
66f27f5
c374b8b
 
66f27f5
c374b8b
66f27f5
c374b8b
 
 
 
66f27f5
c374b8b
 
66f27f5
c374b8b
 
61fd66a
c374b8b
66f27f5
c374b8b
 
 
61fd66a
 
 
 
 
 
 
 
 
 
 
a4e8b55
 
61fd66a
a4e8b55
9ee35b3
a4e8b55
 
 
61fd66a
 
 
a4e8b55
61fd66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f27f5
61fd66a
 
 
 
 
 
 
 
66f27f5
 
c374b8b
66f27f5
 
 
 
61fd66a
 
66f27f5
 
 
 
61fd66a
 
 
 
 
 
 
 
 
 
66f27f5
 
a4e8b55
 
 
 
61fd66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476cf4b
61fd66a
476cf4b
 
61fd66a
 
 
 
 
 
 
 
a4e8b55
 
61fd66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476cf4b
66f27f5
61fd66a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e8b55
61fd66a
 
 
 
 
 
 
 
66f27f5
61fd66a
 
 
 
 
 
 
66f27f5
61fd66a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import os
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import requests
import io
import matplotlib.colors as mcolors
import cv2
from io import BytesIO
import urllib.request
import tempfile
import rasterio
import warnings
warnings.filterwarnings("ignore")

# Try to import segmentation_models_pytorch
try:
    import segmentation_models_pytorch as smp
    smp_available = True
    print("Successfully imported segmentation_models_pytorch")
except ImportError:
    smp_available = False
    print("Warning: segmentation_models_pytorch not available, will try to install it")
    import subprocess
    try:
        subprocess.check_call([
            "pip", "install", "segmentation-models-pytorch"
        ])
        import segmentation_models_pytorch as smp
        smp_available = True
        print("Successfully installed and imported segmentation_models_pytorch")
    except:
        print("Failed to install segmentation_models_pytorch")

# Try to import albumentations if needed for preprocessing
try:
    import albumentations as A
    albumentations_available = True
    print("Successfully imported albumentations")
except ImportError:
    albumentations_available = False
    print("Warning: albumentations not available, will try to install it")
    import subprocess
    try:
        subprocess.check_call([
            "pip", "install", "albumentations"
        ])
        import albumentations as A
        albumentations_available = True
        print("Successfully installed and imported albumentations")
    except:
        print("Failed to install albumentations, will use OpenCV for transforms")

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Initialize the model
if smp_available:
    # Define the DeepLabV3+ model using smp
    model = smp.DeepLabV3Plus(
        encoder_name="resnet34",  # Using ResNet34 backbone as in your training
        encoder_weights=None,     # We'll load your custom weights
        in_channels=3,            # RGB input
        classes=1,                # Binary segmentation
    )
else:
    # Fallback to a simple model that won't actually work but allows the UI to load
    print("Warning: Using a placeholder model that won't produce valid predictions.")
    from torch import nn
    class PlaceholderModel(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 1, 3, padding=1)
        def forward(self, x):
            return self.conv(x)
    model = PlaceholderModel()

# Download model weights from HuggingFace
MODEL_REPO = "dcrey7/wetlands_segmentation_deeplabsv3plus"
MODEL_FILENAME = "DeepLabV3plus_best_model.pth"

def download_model_weights():
    """Download model weights from HuggingFace repository"""
    try:
        os.makedirs('weights', exist_ok=True)
        local_path = os.path.join('weights', MODEL_FILENAME)
        
        # Check if weights are already downloaded
        if os.path.exists(local_path):
            print(f"Model weights already downloaded at {local_path}")
            return local_path
        
        # Download weights
        print(f"Downloading model weights from {MODEL_REPO}...")
        url = f"https://huggingface.co/{MODEL_REPO}/resolve/main/{MODEL_FILENAME}"
        urllib.request.urlretrieve(url, local_path)
        print(f"Model weights downloaded to {local_path}")
        return local_path
    except Exception as e:
        print(f"Error downloading model weights: {e}")
        return None

# Load the model weights
weights_path = download_model_weights()
if weights_path:
    try:
        # Try to load with strict=False to allow for some parameter mismatches
        state_dict = torch.load(weights_path, map_location=device)
        # Check if we need to modify the state dict keys
        if all(key.startswith('encoder.') or key.startswith('decoder.') for key in list(state_dict.keys())[:5]):
            print("Model weights use encoder/decoder format, loading directly")
            model.load_state_dict(state_dict, strict=False)
        else:
            print("Attempting to adapt state dict to match model architecture")
            # This is a placeholder for state dict adaptation if needed
            model.load_state_dict(state_dict, strict=False)
        print("Model weights loaded successfully")
    except Exception as e:
        print(f"Error loading model weights: {e}")
else:
    print("No weights available. Model will not produce valid predictions.")

model.to(device)
model.eval()

def read_tiff_image(tiff_path):
    """
    Read a TIFF image using rasterio, focusing on RGB bands
    This matches your training data loading approach
    """
    try:
        # Read the image using rasterio (get RGB channels)
        with rasterio.open(tiff_path) as src:
            # Check if we have enough bands
            if src.count >= 3:
                red = src.read(1)
                green = src.read(2)
                blue = src.read(3)
                
                # Stack to create RGB image
                image = np.dstack((red, green, blue)).astype(np.float32)
                
                # Normalize to [0, 1]
                if image.max() > 0:
                    image = image / image.max()
                
                return image
            else:
                # If less than 3 bands, handle accordingly
                bands = [src.read(i+1) for i in range(src.count)]
                # If only one band, duplicate to create RGB
                if len(bands) == 1:
                    image = np.dstack((bands[0], bands[0], bands[0]))
                else:
                    # Use available bands and pad with zeros if needed
                    while len(bands) < 3:
                        bands.append(np.zeros_like(bands[0]))
                    image = np.dstack(bands[:3])  # Use first 3 bands
                
                # Normalize
                if image.max() > 0:
                    image = image / image.max()
                
                return image
    except Exception as e:
        print(f"Error reading TIFF file: {e}")
        return None

def read_tiff_mask(mask_path):
    """
    Read a TIFF mask using rasterio
    This matches your training data loading approach
    """
    try:
        # Read mask
        with rasterio.open(mask_path) as src:
            mask = src.read(1).astype(np.uint8)
        return mask
    except Exception as e:
        print(f"Error reading mask file: {e}")
        return None

def preprocess_image(image, target_size=(128, 128)):
    """
    Preprocess an image for inference
    """
    # If image is already a numpy array, use it directly
    if isinstance(image, np.ndarray):
        # Ensure RGB format
        if len(image.shape) == 2:  # Grayscale
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
        elif image.shape[2] == 4:  # RGBA
            image = image[:, :, :3]
        
        # Make a copy for display
        display_image = image.copy()
        
        # Normalize to [0, 1] if needed
        if display_image.max() > 1.0:
            image = image.astype(np.float32) / 255.0
    
    # Convert PIL image to numpy
    elif isinstance(image, Image.Image):
        image = np.array(image)
        
        # Ensure RGB format
        if len(image.shape) == 2:  # Grayscale
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
        elif image.shape[2] == 4:  # RGBA
            image = image[:, :, :3]
        
        # Make a copy for display
        display_image = image.copy()
        
        # Normalize to [0, 1]
        image = image.astype(np.float32) / 255.0
    else:
        print(f"Unsupported image type: {type(image)}")
        return None, None
    
    # Resize image to the target size
    if albumentations_available:
        # Use albumentations to match training preprocessing
        aug = A.Compose([
            A.PadIfNeeded(min_height=target_size[0], min_width=target_size[1], 
                         border_mode=cv2.BORDER_CONSTANT, value=0),
            A.CenterCrop(height=target_size[0], width=target_size[1])
        ])
        augmented = aug(image=image)
        image_resized = augmented['image']
    else:
        # Fallback to OpenCV
        image_resized = cv2.resize(image, target_size, interpolation=cv2.INTER_LINEAR)
    
    # Convert to tensor [C, H, W]
    image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0)
    
    return image_tensor, display_image

def extract_file_content(file_obj):
    """Extract content from the file object, handling different types"""
    try:
        if hasattr(file_obj, 'name') and isinstance(file_obj, str):
            # Handle Gradio's NamedString
            content = file_obj
            if os.path.exists(content):
                # It's a path
                with open(content, 'rb') as f:
                    return f.read()
            else:
                # It's content
                return content.encode('latin1')
        elif hasattr(file_obj, 'read'):
            # File-like object
            return file_obj.read()
        elif isinstance(file_obj, bytes):
            # Already bytes
            return file_obj
        elif isinstance(file_obj, str):
            # String path
            if os.path.exists(file_obj):
                with open(file_obj, 'rb') as f:
                    return f.read()
            else:
                return file_obj.encode('utf-8')
        else:
            print(f"Unsupported file object type: {type(file_obj)}")
            return None
    except Exception as e:
        print(f"Error extracting file content: {e}")
        return None

def process_uploaded_tiff(file_obj):
    """Process an uploaded TIFF file"""
    try:
        # Get file content
        file_content = extract_file_content(file_obj)
        if file_content is None:
            print("Failed to extract file content")
            return None, None
        
        # Save to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix='.tif') as temp_file:
            temp_path = temp_file.name
            temp_file.write(file_content)
        
        # Read as TIFF
        image = read_tiff_image(temp_path)
        
        # Clean up
        os.unlink(temp_path)
        
        if image is None:
            return None, None
        
        # Make a copy for display
        display_image = (image * 255).astype(np.uint8) if image.max() <= 1.0 else image.copy()
        
        # Resize/preprocess
        if albumentations_available:
            aug = A.Compose([
                A.PadIfNeeded(min_height=128, min_width=128, 
                             border_mode=cv2.BORDER_CONSTANT, value=0),
                A.CenterCrop(height=128, width=128)
            ])
            augmented = aug(image=image)
            image_resized = augmented['image']
        else:
            image_resized = cv2.resize(image, (128, 128), interpolation=cv2.INTER_LINEAR)
        
        # Convert to tensor
        image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0)
        
        return image_tensor, display_image
    
    except Exception as e:
        print(f"Error processing uploaded TIFF: {e}")
        import traceback
        traceback.print_exc()
        return None, None

def process_uploaded_mask(file_obj):
    """Process an uploaded mask file"""
    try:
        # Get file content
        file_content = extract_file_content(file_obj)
        if file_content is None:
            return None
        
        # Save to a temporary file
        # Determine suffix based on file name if available
        suffix = '.tif'
        if hasattr(file_obj, 'name'):
            file_name = getattr(file_obj, 'name')
            if isinstance(file_name, str) and '.' in file_name:
                suffix = '.' + file_name.split('.')[-1].lower()
        
        with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
            temp_path = temp_file.name
            temp_file.write(file_content)
        
        # Check if it's a TIFF file
        if temp_path.lower().endswith(('.tif', '.tiff')):
            mask = read_tiff_mask(temp_path)
        else:
            # Try to open as a regular image
            try:
                mask_img = Image.open(temp_path)
                mask = np.array(mask_img)
                if len(mask.shape) == 3:
                    mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
            except Exception as e:
                print(f"Error opening mask as regular image: {e}")
                os.unlink(temp_path)
                return None
        
        # Clean up
        os.unlink(temp_path)
        
        if mask is None:
            return None
        
        # Resize mask to 128x128
        if albumentations_available:
            aug = A.Compose([
                A.PadIfNeeded(min_height=128, min_width=128, 
                             border_mode=cv2.BORDER_CONSTANT, value=0),
                A.CenterCrop(height=128, width=128)
            ])
            augmented = aug(image=mask)
            mask_resized = augmented['image']
        else:
            mask_resized = cv2.resize(mask, (128, 128), interpolation=cv2.INTER_NEAREST)
        
        # Binarize the mask (0: background, 1: wetland)
        mask_binary = (mask_resized > 0).astype(np.uint8)
        
        return mask_binary
    
    except Exception as e:
        print(f"Error processing uploaded mask: {e}")
        import traceback
        traceback.print_exc()
        return None

def predict_segmentation(image_tensor):
    """
    Run inference on the model
    """
    try:
        image_tensor = image_tensor.to(device)
        
        with torch.no_grad():
            output = model(image_tensor)
            
            # Handle different model output formats
            if isinstance(output, dict):
                output = output['out']
            if output.shape[1] > 1:  # Multi-class output
                pred = torch.argmax(output, dim=1).squeeze(0).cpu().numpy()
            else:  # Binary output (from smp models)
                pred = (torch.sigmoid(output) > 0.5).squeeze().cpu().numpy().astype(np.uint8)
                
        return pred
    except Exception as e:
        print(f"Error during prediction: {e}")
        return None

def calculate_metrics(pred_mask, gt_mask):
    """
    Calculate evaluation metrics between prediction and ground truth
    """
    # Ensure binary masks
    pred_binary = (pred_mask > 0).astype(np.uint8)
    gt_binary = (gt_mask > 0).astype(np.uint8)
    
    # Calculate intersection and union
    intersection = np.logical_and(pred_binary, gt_binary).sum()
    union = np.logical_or(pred_binary, gt_binary).sum()
    
    # Calculate IoU
    iou = intersection / union if union > 0 else 0
    
    # Calculate precision and recall
    true_positive = intersection
    false_positive = pred_binary.sum() - true_positive
    false_negative = gt_binary.sum() - true_positive
    
    precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0
    recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0
    
    # Calculate F1 score
    f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0
    
    metrics = {
        "IoU": float(iou),
        "Precision": float(precision),
        "Recall": float(recall),
        "F1 Score": float(f1)
    }
    
    return metrics

def process_images(input_image=None, input_tiff=None, gt_mask_file=None):
    """
    Process input images and generate predictions
    """
    try:
        # Check if we have input
        if input_image is None and input_tiff is None:
            return None, "Please upload an image or TIFF file."
        
        # Process the input
        if input_tiff is not None and input_tiff:
            # Process uploaded TIFF file
            image_tensor, display_image = process_uploaded_tiff(input_tiff)
            if image_tensor is None:
                return None, "Failed to process the input TIFF file."
        elif input_image is not None:
            # Process regular image
            image_tensor, display_image = preprocess_image(input_image)
            if image_tensor is None:
                return None, "Failed to process the input image."
        else:
            return None, "No valid input provided."
        
        # Get prediction
        pred_mask = predict_segmentation(image_tensor)
        if pred_mask is None:
            return None, "Failed to generate prediction."
        
        # Process ground truth mask if provided
        gt_mask_processed = None
        metrics_text = ""
        
        if gt_mask_file is not None and gt_mask_file:
            gt_mask_processed = process_uploaded_mask(gt_mask_file)
            
            if gt_mask_processed is not None:
                metrics = calculate_metrics(pred_mask, gt_mask_processed)
                metrics_text = "\n".join([f"{k}: {v:.4f}" for k, v in metrics.items()])
        
        # Create visualization
        fig = plt.figure(figsize=(12, 6))
        
        if gt_mask_processed is not None:
            # Show original, ground truth, and prediction
            plt.subplot(1, 3, 1)
            plt.imshow(display_image)
            plt.title("Input Image")
            plt.axis('off')
            
            plt.subplot(1, 3, 2)
            plt.imshow(gt_mask_processed, cmap='binary')
            plt.title("Ground Truth")
            plt.axis('off')
            
            plt.subplot(1, 3, 3)
            plt.imshow(pred_mask, cmap='binary')
            plt.title("Prediction")
            plt.axis('off')
        else:
            # Show original and prediction
            plt.subplot(1, 2, 1)
            plt.imshow(display_image)
            plt.title("Input Image")
            plt.axis('off')
            
            plt.subplot(1, 2, 2)
            plt.imshow(pred_mask, cmap='binary')
            plt.title("Predicted Wetlands")
            plt.axis('off')
        
        # Calculate wetland percentage
        wetland_percentage = np.mean(pred_mask) * 100
        
        # Add metrics info
        result_text = f"Wetland Coverage: {wetland_percentage:.2f}%"
        if metrics_text:
            result_text += f"\n\nEvaluation Metrics:\n{metrics_text}"
        
        # Convert figure to image for display
        plt.tight_layout()
        buf = BytesIO()
        plt.savefig(buf, format='png')
        buf.seek(0)
        result_image = Image.open(buf)
        plt.close(fig)
        
        return result_image, result_text
        
    except Exception as e:
        print(f"Error in processing: {e}")
        import traceback
        traceback.print_exc()
        return None, f"Error: {str(e)}"

# Create Gradio interface
with gr.Blocks(title="Wetlands Segmentation from Satellite Imagery") as demo:
    gr.Markdown("# Wetlands Segmentation from Satellite Imagery")
    gr.Markdown("Upload a satellite image or TIFF file to identify wetland areas. Optionally, you can also upload a ground truth mask for evaluation.")
    
    with gr.Row():
        with gr.Column():
            # Input options
            gr.Markdown("### Input")
            with gr.Tab("Upload Image"):
                input_image = gr.Image(label="Upload Satellite Image", type="numpy")
            
            with gr.Tab("Upload TIFF"):
                input_tiff = gr.File(label="Upload TIFF File", file_types=[".tif", ".tiff"])
            
            # Ground truth mask as file upload
            gt_mask_file = gr.File(label="Ground Truth Mask (Optional)", file_types=[".tif", ".tiff", ".png", ".jpg", ".jpeg"])
            
            process_btn = gr.Button("Analyze Image", variant="primary")
        
        with gr.Column():
            # Output
            gr.Markdown("### Results")
            output_image = gr.Image(label="Segmentation Results", type="pil")
            output_text = gr.Textbox(label="Statistics", lines=6)
    
    # Information about the model
    gr.Markdown("### About this model")
    gr.Markdown("""
    This application uses a DeepLabv3+ model trained to segment wetland areas in satellite imagery.
    
    **Model Details:**
    - Architecture: DeepLabv3+ with ResNet-34
    - Input: RGB satellite imagery
    - Output: Binary segmentation mask (Wetland vs Background)
    - Resolution: 128×128 pixels
    
    **Tips for best results:**
    - The model works best with RGB satellite imagery
    - For optimal results, use images with similar characteristics to those used in training
    - The model focuses on identifying wetland regions in natural landscapes
    - For ground truth masks, both TIFF and standard image formats are supported
    
    **Repository:** [dcrey7/wetlands_segmentation_deeplabsv3plus](https://huggingface.co/dcrey7/wetlands_segmentation_deeplabsv3plus)
    """)
    
    # Set up event handlers
    process_btn.click(
        fn=process_images,
        inputs=[input_image, input_tiff, gt_mask_file],
        outputs=[output_image, output_text]
    )

# Launch the app
demo.launch()