Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torchvision.transforms as transforms
|
| 8 |
+
import requests
|
| 9 |
+
import io
|
| 10 |
+
import matplotlib.colors as mcolors
|
| 11 |
+
import cv2
|
| 12 |
+
from io import BytesIO
|
| 13 |
+
import urllib.request
|
| 14 |
+
import tempfile
|
| 15 |
+
import rasterio
|
| 16 |
+
from rasterio.plot import reshape_as_image
|
| 17 |
+
import warnings
|
| 18 |
+
warnings.filterwarnings("ignore")
|
| 19 |
+
|
| 20 |
+
# Set device
|
| 21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
+
print(f"Using device: {device}")
|
| 23 |
+
|
| 24 |
+
# Define the DeepLabv3+ model architecture
|
| 25 |
+
# This needs to match your trained model architecture
|
| 26 |
+
from torchvision.models.segmentation import deeplabv3_resnet50
|
| 27 |
+
|
| 28 |
+
# Initialize the model
|
| 29 |
+
model = deeplabv3_resnet50(pretrained=False, num_classes=2)
|
| 30 |
+
|
| 31 |
+
# Download model weights from HuggingFace
|
| 32 |
+
MODEL_REPO = "dcrey7/wetlands_segmentation_deeplabsv3plus"
|
| 33 |
+
MODEL_FILENAME = "DeepLabV3plus_best_model.pth"
|
| 34 |
+
|
| 35 |
+
def download_model_weights():
|
| 36 |
+
"""Download model weights from HuggingFace repository"""
|
| 37 |
+
try:
|
| 38 |
+
os.makedirs('weights', exist_ok=True)
|
| 39 |
+
local_path = os.path.join('weights', MODEL_FILENAME)
|
| 40 |
+
|
| 41 |
+
# Check if weights are already downloaded
|
| 42 |
+
if os.path.exists(local_path):
|
| 43 |
+
print(f"Model weights already downloaded at {local_path}")
|
| 44 |
+
return local_path
|
| 45 |
+
|
| 46 |
+
# Download weights
|
| 47 |
+
print(f"Downloading model weights from {MODEL_REPO}...")
|
| 48 |
+
url = f"https://huggingface.co/{MODEL_REPO}/resolve/main/{MODEL_FILENAME}"
|
| 49 |
+
urllib.request.urlretrieve(url, local_path)
|
| 50 |
+
print(f"Model weights downloaded to {local_path}")
|
| 51 |
+
return local_path
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Error downloading model weights: {e}")
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
# Load the model weights
|
| 57 |
+
weights_path = download_model_weights()
|
| 58 |
+
if weights_path:
|
| 59 |
+
try:
|
| 60 |
+
model.load_state_dict(torch.load(weights_path, map_location=device))
|
| 61 |
+
print("Model weights loaded successfully")
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Error loading model weights: {e}")
|
| 64 |
+
else:
|
| 65 |
+
print("No weights available. Model will not produce valid predictions.")
|
| 66 |
+
|
| 67 |
+
model.to(device)
|
| 68 |
+
model.eval()
|
| 69 |
+
|
| 70 |
+
def preprocess_image(image, target_size=(128, 128)):
|
| 71 |
+
"""
|
| 72 |
+
Preprocess an image for inference
|
| 73 |
+
"""
|
| 74 |
+
# Convert to numpy array if PIL image
|
| 75 |
+
if isinstance(image, Image.Image):
|
| 76 |
+
image = np.array(image)
|
| 77 |
+
|
| 78 |
+
# Ensure RGB format
|
| 79 |
+
if len(image.shape) == 2: # Grayscale
|
| 80 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
| 81 |
+
elif image.shape[2] == 4: # RGBA
|
| 82 |
+
image = image[:, :, :3]
|
| 83 |
+
|
| 84 |
+
# Resize image
|
| 85 |
+
image_resized = cv2.resize(image, target_size, interpolation=cv2.INTER_LINEAR)
|
| 86 |
+
|
| 87 |
+
# Normalize image to [0, 1]
|
| 88 |
+
image_normalized = image_resized.astype(np.float32)
|
| 89 |
+
if image_normalized.max() > 0:
|
| 90 |
+
image_normalized = image_normalized / image_normalized.max()
|
| 91 |
+
|
| 92 |
+
# Convert to tensor [C, H, W]
|
| 93 |
+
image_tensor = torch.from_numpy(image_normalized.transpose(2, 0, 1)).float().unsqueeze(0)
|
| 94 |
+
return image_tensor, image_resized
|
| 95 |
+
|
| 96 |
+
def preprocess_tiff(tiff_path, target_size=(128, 128)):
|
| 97 |
+
"""
|
| 98 |
+
Preprocess a TIFF file for inference
|
| 99 |
+
"""
|
| 100 |
+
try:
|
| 101 |
+
with rasterio.open(tiff_path) as src:
|
| 102 |
+
# Read RGB bands if available
|
| 103 |
+
if src.count >= 3:
|
| 104 |
+
red = src.read(1)
|
| 105 |
+
green = src.read(2)
|
| 106 |
+
blue = src.read(3)
|
| 107 |
+
image = np.dstack((red, green, blue))
|
| 108 |
+
else:
|
| 109 |
+
# If less than 3 bands, read all available bands
|
| 110 |
+
bands = [src.read(i+1) for i in range(src.count)]
|
| 111 |
+
# If only one band, duplicate to create RGB
|
| 112 |
+
if len(bands) == 1:
|
| 113 |
+
image = np.dstack((bands[0], bands[0], bands[0]))
|
| 114 |
+
else:
|
| 115 |
+
# Use available bands and pad with zeros if needed
|
| 116 |
+
while len(bands) < 3:
|
| 117 |
+
bands.append(np.zeros_like(bands[0]))
|
| 118 |
+
image = np.dstack(bands[:3]) # Use first 3 bands
|
| 119 |
+
|
| 120 |
+
# Normalize image to [0, 1]
|
| 121 |
+
image = image.astype(np.float32)
|
| 122 |
+
if image.max() > 0:
|
| 123 |
+
image = image / image.max()
|
| 124 |
+
|
| 125 |
+
# Create a display image
|
| 126 |
+
display_image = (image * 255).astype(np.uint8)
|
| 127 |
+
|
| 128 |
+
# Resize image
|
| 129 |
+
image_resized = cv2.resize(image, target_size, interpolation=cv2.INTER_LINEAR)
|
| 130 |
+
display_resized = cv2.resize(display_image, target_size, interpolation=cv2.INTER_LINEAR)
|
| 131 |
+
|
| 132 |
+
# Convert to tensor [C, H, W]
|
| 133 |
+
image_tensor = torch.from_numpy(image_resized.transpose(2, 0, 1)).float().unsqueeze(0)
|
| 134 |
+
|
| 135 |
+
return image_tensor, display_resized
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print(f"Error processing TIFF: {e}")
|
| 138 |
+
return None, None
|
| 139 |
+
|
| 140 |
+
def preprocess_mask(mask, target_size=(128, 128)):
|
| 141 |
+
"""
|
| 142 |
+
Preprocess a ground truth mask
|
| 143 |
+
"""
|
| 144 |
+
# Convert to numpy array if PIL image
|
| 145 |
+
if isinstance(mask, Image.Image):
|
| 146 |
+
mask = np.array(mask)
|
| 147 |
+
|
| 148 |
+
# Convert to grayscale if needed
|
| 149 |
+
if len(mask.shape) == 3:
|
| 150 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
| 151 |
+
|
| 152 |
+
# Resize mask
|
| 153 |
+
mask_resized = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
|
| 154 |
+
|
| 155 |
+
# Binarize the mask (0: background, 1: wetland)
|
| 156 |
+
mask_binary = (mask_resized > 127).astype(np.uint8)
|
| 157 |
+
|
| 158 |
+
return mask_binary
|
| 159 |
+
|
| 160 |
+
def predict_segmentation(image_tensor):
|
| 161 |
+
"""
|
| 162 |
+
Run inference on the model
|
| 163 |
+
"""
|
| 164 |
+
try:
|
| 165 |
+
image_tensor = image_tensor.to(device)
|
| 166 |
+
|
| 167 |
+
with torch.no_grad():
|
| 168 |
+
output = model(image_tensor)
|
| 169 |
+
|
| 170 |
+
# Extract the output based on model type
|
| 171 |
+
if isinstance(output, dict):
|
| 172 |
+
output = output['out']
|
| 173 |
+
|
| 174 |
+
# Get the predicted class (0: background, 1: wetland)
|
| 175 |
+
pred = torch.argmax(output, dim=1).squeeze(0).cpu().numpy()
|
| 176 |
+
|
| 177 |
+
return pred
|
| 178 |
+
except Exception as e:
|
| 179 |
+
print(f"Error during prediction: {e}")
|
| 180 |
+
return None
|
| 181 |
+
|
| 182 |
+
def calculate_metrics(pred_mask, gt_mask):
|
| 183 |
+
"""
|
| 184 |
+
Calculate evaluation metrics between prediction and ground truth
|
| 185 |
+
"""
|
| 186 |
+
# Ensure binary masks
|
| 187 |
+
pred_binary = (pred_mask > 0).astype(np.uint8)
|
| 188 |
+
gt_binary = (gt_mask > 0).astype(np.uint8)
|
| 189 |
+
|
| 190 |
+
# Calculate intersection and union
|
| 191 |
+
intersection = np.logical_and(pred_binary, gt_binary).sum()
|
| 192 |
+
union = np.logical_or(pred_binary, gt_binary).sum()
|
| 193 |
+
|
| 194 |
+
# Calculate IoU
|
| 195 |
+
iou = intersection / union if union > 0 else 0
|
| 196 |
+
|
| 197 |
+
# Calculate precision and recall
|
| 198 |
+
true_positive = intersection
|
| 199 |
+
false_positive = pred_binary.sum() - true_positive
|
| 200 |
+
false_negative = gt_binary.sum() - true_positive
|
| 201 |
+
|
| 202 |
+
precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0
|
| 203 |
+
recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0
|
| 204 |
+
|
| 205 |
+
# Calculate F1 score
|
| 206 |
+
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0
|
| 207 |
+
|
| 208 |
+
metrics = {
|
| 209 |
+
"IoU": float(iou),
|
| 210 |
+
"Precision": float(precision),
|
| 211 |
+
"Recall": float(recall),
|
| 212 |
+
"F1 Score": float(f1)
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
return metrics
|
| 216 |
+
|
| 217 |
+
def process_images(input_image=None, input_tiff=None, gt_mask=None):
|
| 218 |
+
"""
|
| 219 |
+
Process input images and generate predictions
|
| 220 |
+
"""
|
| 221 |
+
try:
|
| 222 |
+
# Check if we have input
|
| 223 |
+
if input_image is None and input_tiff is None:
|
| 224 |
+
return None, "Please upload an image or TIFF file."
|
| 225 |
+
|
| 226 |
+
# Process the input image
|
| 227 |
+
if input_tiff is not None:
|
| 228 |
+
# Save uploaded TIFF to a temporary file
|
| 229 |
+
with tempfile.NamedTemporaryFile(suffix='.tif', delete=False) as temp_tiff:
|
| 230 |
+
temp_tiff_path = temp_tiff.name
|
| 231 |
+
temp_tiff.write(input_tiff)
|
| 232 |
+
|
| 233 |
+
# Process TIFF file
|
| 234 |
+
image_tensor, display_image = preprocess_tiff(temp_tiff_path)
|
| 235 |
+
os.unlink(temp_tiff_path) # Clean up temp file
|
| 236 |
+
else:
|
| 237 |
+
# Process regular image
|
| 238 |
+
image_tensor, display_image = preprocess_image(input_image)
|
| 239 |
+
|
| 240 |
+
if image_tensor is None:
|
| 241 |
+
return None, "Failed to process the input image."
|
| 242 |
+
|
| 243 |
+
# Get prediction
|
| 244 |
+
pred_mask = predict_segmentation(image_tensor)
|
| 245 |
+
if pred_mask is None:
|
| 246 |
+
return None, "Failed to generate prediction."
|
| 247 |
+
|
| 248 |
+
# Process ground truth mask if provided
|
| 249 |
+
gt_mask_processed = None
|
| 250 |
+
metrics_text = ""
|
| 251 |
+
|
| 252 |
+
if gt_mask is not None:
|
| 253 |
+
gt_mask_processed = preprocess_mask(gt_mask)
|
| 254 |
+
metrics = calculate_metrics(pred_mask, gt_mask_processed)
|
| 255 |
+
metrics_text = "\n".join([f"{k}: {v:.4f}" for k, v in metrics.items()])
|
| 256 |
+
|
| 257 |
+
# Create visualization
|
| 258 |
+
fig = plt.figure(figsize=(12, 6))
|
| 259 |
+
|
| 260 |
+
if gt_mask_processed is not None:
|
| 261 |
+
# Show original, ground truth, and prediction
|
| 262 |
+
plt.subplot(1, 3, 1)
|
| 263 |
+
plt.imshow(display_image)
|
| 264 |
+
plt.title("Input Image")
|
| 265 |
+
plt.axis('off')
|
| 266 |
+
|
| 267 |
+
plt.subplot(1, 3, 2)
|
| 268 |
+
plt.imshow(gt_mask_processed, cmap='binary')
|
| 269 |
+
plt.title("Ground Truth")
|
| 270 |
+
plt.axis('off')
|
| 271 |
+
|
| 272 |
+
plt.subplot(1, 3, 3)
|
| 273 |
+
plt.imshow(pred_mask, cmap='binary')
|
| 274 |
+
plt.title("Prediction")
|
| 275 |
+
plt.axis('off')
|
| 276 |
+
else:
|
| 277 |
+
# Show original and prediction
|
| 278 |
+
plt.subplot(1, 2, 1)
|
| 279 |
+
plt.imshow(display_image)
|
| 280 |
+
plt.title("Input Image")
|
| 281 |
+
plt.axis('off')
|
| 282 |
+
|
| 283 |
+
plt.subplot(1, 2, 2)
|
| 284 |
+
plt.imshow(pred_mask, cmap='binary')
|
| 285 |
+
plt.title("Predicted Wetlands")
|
| 286 |
+
plt.axis('off')
|
| 287 |
+
|
| 288 |
+
# Calculate wetland percentage
|
| 289 |
+
wetland_percentage = np.mean(pred_mask) * 100
|
| 290 |
+
|
| 291 |
+
# Add metrics info
|
| 292 |
+
result_text = f"Wetland Coverage: {wetland_percentage:.2f}%"
|
| 293 |
+
if metrics_text:
|
| 294 |
+
result_text += f"\n\nEvaluation Metrics:\n{metrics_text}"
|
| 295 |
+
|
| 296 |
+
# Convert figure to image
|
| 297 |
+
buf = BytesIO()
|
| 298 |
+
plt.tight_layout()
|
| 299 |
+
plt.savefig(buf, format='png', dpi=150)
|
| 300 |
+
buf.seek(0)
|
| 301 |
+
result_image = Image.open(buf)
|
| 302 |
+
plt.close(fig)
|
| 303 |
+
|
| 304 |
+
return result_image, result_text
|
| 305 |
+
|
| 306 |
+
except Exception as e:
|
| 307 |
+
print(f"Error in processing: {e}")
|
| 308 |
+
return None, f"Error: {str(e)}"
|
| 309 |
+
|
| 310 |
+
# Create Gradio interface
|
| 311 |
+
with gr.Blocks(title="Wetlands Segmentation from Satellite Imagery") as demo:
|
| 312 |
+
gr.Markdown("# Wetlands Segmentation from Satellite Imagery")
|
| 313 |
+
gr.Markdown("Upload a satellite image or TIFF file to identify wetland areas. Optionally, you can also upload a ground truth mask for evaluation.")
|
| 314 |
+
|
| 315 |
+
with gr.Row():
|
| 316 |
+
with gr.Column():
|
| 317 |
+
# Input options
|
| 318 |
+
gr.Markdown("### Input")
|
| 319 |
+
with gr.Tab("Upload Image"):
|
| 320 |
+
input_image = gr.Image(label="Upload Satellite Image", type="numpy")
|
| 321 |
+
|
| 322 |
+
with gr.Tab("Upload TIFF"):
|
| 323 |
+
input_tiff = gr.File(label="Upload TIFF File", file_types=[".tif", ".tiff"])
|
| 324 |
+
|
| 325 |
+
gt_mask = gr.Image(label="Ground Truth Mask (Optional)", type="numpy")
|
| 326 |
+
|
| 327 |
+
process_btn = gr.Button("Analyze Image", variant="primary")
|
| 328 |
+
|
| 329 |
+
with gr.Column():
|
| 330 |
+
# Output
|
| 331 |
+
gr.Markdown("### Results")
|
| 332 |
+
output_image = gr.Image(label="Segmentation Results", type="pil")
|
| 333 |
+
output_text = gr.Textbox(label="Statistics", lines=6)
|
| 334 |
+
|
| 335 |
+
# Information about the model
|
| 336 |
+
gr.Markdown("### About this model")
|
| 337 |
+
gr.Markdown("""
|
| 338 |
+
This application uses a DeepLabv3+ model trained to segment wetland areas in satellite imagery.
|
| 339 |
+
|
| 340 |
+
**Model Details:**
|
| 341 |
+
- Architecture: DeepLabv3+ with ResNet-50 backbone
|
| 342 |
+
- Input: RGB satellite imagery
|
| 343 |
+
- Output: Binary segmentation mask (Wetland vs Background)
|
| 344 |
+
- Resolution: 128×128 pixels
|
| 345 |
+
|
| 346 |
+
**Tips for best results:**
|
| 347 |
+
- The model works best with RGB satellite imagery
|
| 348 |
+
- For optimal results, use images with similar characteristics to those used in training
|
| 349 |
+
- The model focuses on identifying wetland regions in natural landscapes
|
| 350 |
+
|
| 351 |
+
**Repository:** [dcrey7/wetlands_segmentation_deeplabsv3plus](https://huggingface.co/dcrey7/wetlands_segmentation_deeplabsv3plus)
|
| 352 |
+
""")
|
| 353 |
+
|
| 354 |
+
# Set up event handlers
|
| 355 |
+
process_btn.click(
|
| 356 |
+
fn=process_images,
|
| 357 |
+
inputs=[input_image, input_tiff, gt_mask],
|
| 358 |
+
outputs=[output_image, output_text]
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# Launch the app
|
| 362 |
+
demo.launch()
|