Spaces:
Paused
Paused
File size: 8,564 Bytes
91a4119 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# π¬ Jan v1 Research Assistant - Google Colab Version\n",
"\n",
"Run Jan v1 (4B params) for FREE with Google Colab GPU!\n",
"\n",
"**Instructions:**\n",
"1. Go to Runtime β Change runtime type\n",
"2. Select GPU: T4 (free)\n",
"3. Run all cells\n",
"4. Use the Gradio interface at the bottom"
],
"metadata": {
"id": "view-in-github"
}
},
{
"cell_type": "markdown",
"source": [
"## 1οΈβ£ Install Dependencies"
],
"metadata": {
"id": "step1"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "install"
},
"outputs": [],
"source": [
"!pip install transformers torch gradio accelerate bitsandbytes sentencepiece beautifulsoup4 requests -q\n",
"print(\"β
Dependencies installed!\")"
]
},
{
"cell_type": "markdown",
"source": [
"## 2οΈβ£ Load Jan v1 Model"
],
"metadata": {
"id": "step2"
}
},
{
"cell_type": "code",
"source": [
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"import torch\n",
"\n",
"print(\"π Loading Jan v1 model...\")\n",
"model_name = \"janhq/Jan-v1-4B\"\n",
"\n",
"# Load with 8-bit quantization to save memory\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"model = AutoModelForCausalLM.from_pretrained(\n",
" model_name,\n",
" torch_dtype=torch.float16,\n",
" device_map=\"auto\",\n",
" load_in_8bit=True\n",
")\n",
"\n",
"print(\"β
Model loaded successfully!\")\n",
"print(f\"Model size: {model.num_parameters()/1e9:.2f}B parameters\")"
],
"metadata": {
"id": "load_model"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## 3οΈβ£ Define Research Functions"
],
"metadata": {
"id": "step3"
}
},
{
"cell_type": "code",
"source": [
"import requests\n",
"from bs4 import BeautifulSoup\n",
"import gradio as gr\n",
"\n",
"def scrape_url(url: str) -> str:\n",
" \"\"\"Scrape and extract text from URL\"\"\"\n",
" try:\n",
" headers = {'User-Agent': 'Mozilla/5.0'}\n",
" response = requests.get(url, headers=headers, timeout=10)\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" \n",
" for script in soup([\"script\", \"style\"]):\n",
" script.decompose()\n",
" \n",
" text = soup.get_text()\n",
" lines = (line.strip() for line in text.splitlines())\n",
" chunks = (phrase.strip() for line in lines for phrase in line.split(\" \"))\n",
" text = ' '.join(chunk for chunk in chunks if chunk)\n",
" \n",
" return text[:4000]\n",
" except Exception as e:\n",
" return f\"Error: {str(e)}\"\n",
"\n",
"def research_assistant(query: str, context: str = \"\", temperature: float = 0.6):\n",
" \"\"\"Main research function using Jan v1\"\"\"\n",
" \n",
" # Check if context is URL\n",
" if context.startswith('http'):\n",
" context = scrape_url(context)\n",
" \n",
" prompt = f\"\"\"You are an expert research analyst. Provide comprehensive analysis.\n",
"\n",
"Context: {context if context else 'No specific context'}\n",
"\n",
"Query: {query}\n",
"\n",
"Provide:\n",
"1. Key findings\n",
"2. Critical analysis\n",
"3. Supporting evidence\n",
"4. Follow-up questions\n",
"\n",
"Analysis:\"\"\"\n",
" \n",
" inputs = tokenizer(prompt, return_tensors=\"pt\", truncation=True, max_length=2048)\n",
" inputs = inputs.to(model.device)\n",
" \n",
" with torch.no_grad():\n",
" outputs = model.generate(\n",
" **inputs,\n",
" max_new_tokens=1024,\n",
" temperature=temperature,\n",
" top_p=0.95,\n",
" top_k=20,\n",
" do_sample=True,\n",
" pad_token_id=tokenizer.eos_token_id\n",
" )\n",
" \n",
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
" response = response.replace(prompt, \"\").strip()\n",
" \n",
" return response\n",
"\n",
"print(\"β
Functions defined!\")"
],
"metadata": {
"id": "functions"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## 4οΈβ£ Create Gradio Interface"
],
"metadata": {
"id": "step4"
}
},
{
"cell_type": "code",
"source": [
"# Create Gradio interface\n",
"with gr.Blocks(title=\"Jan v1 Research Assistant\", theme=gr.themes.Soft()) as demo:\n",
" gr.Markdown(\"\"\"\n",
" # π¬ Jan v1 Research Assistant (Google Colab)\n",
" \n",
" Powered by Jan-v1-4B - Running on FREE Google Colab GPU!\n",
" \"\"\")\n",
" \n",
" with gr.Row():\n",
" with gr.Column():\n",
" query = gr.Textbox(\n",
" label=\"Research Query\",\n",
" placeholder=\"What would you like to research?\",\n",
" lines=2\n",
" )\n",
" context = gr.Textbox(\n",
" label=\"Context (text or URL)\",\n",
" placeholder=\"Paste text or URL to analyze\",\n",
" lines=5\n",
" )\n",
" temp = gr.Slider(0.1, 1.0, value=0.6, label=\"Temperature\")\n",
" btn = gr.Button(\"π Analyze\", variant=\"primary\")\n",
" \n",
" with gr.Column():\n",
" output = gr.Textbox(\n",
" label=\"Analysis Results\",\n",
" lines=15\n",
" )\n",
" \n",
" btn.click(\n",
" research_assistant,\n",
" inputs=[query, context, temp],\n",
" outputs=output\n",
" )\n",
" \n",
" gr.Examples(\n",
" examples=[\n",
" [\"What are the key trends in AI research?\", \"\", 0.6],\n",
" [\"Analyze this article for bias\", \"https://example.com/article\", 0.4],\n",
" [\"Generate research questions about climate change\", \"\", 0.7]\n",
" ],\n",
" inputs=[query, context, temp]\n",
" )\n",
"\n",
"# Launch the interface\n",
"demo.launch(share=True) # share=True creates a public link"
],
"metadata": {
"id": "gradio"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## π Quick Test"
],
"metadata": {
"id": "test"
}
},
{
"cell_type": "code",
"source": [
"# Test the model directly\n",
"test_result = research_assistant(\n",
" \"What are the implications of large language models for research?\",\n",
" \"Large language models have billions of parameters and can process vast amounts of text.\"\n",
")\n",
"\n",
"print(\"Test Result:\")\n",
"print(test_result)"
],
"metadata": {
"id": "test_code"
},
"execution_count": null,
"outputs": []
}
]
} |