Spaces:
Paused
Paused
Add Google Colab notebook for free GPU usage
Browse files- jan-v1-colab.ipynb +269 -0
jan-v1-colab.ipynb
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"source": [
|
22 |
+
"# π¬ Jan v1 Research Assistant - Google Colab Version\n",
|
23 |
+
"\n",
|
24 |
+
"Run Jan v1 (4B params) for FREE with Google Colab GPU!\n",
|
25 |
+
"\n",
|
26 |
+
"**Instructions:**\n",
|
27 |
+
"1. Go to Runtime β Change runtime type\n",
|
28 |
+
"2. Select GPU: T4 (free)\n",
|
29 |
+
"3. Run all cells\n",
|
30 |
+
"4. Use the Gradio interface at the bottom"
|
31 |
+
],
|
32 |
+
"metadata": {
|
33 |
+
"id": "view-in-github"
|
34 |
+
}
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "markdown",
|
38 |
+
"source": [
|
39 |
+
"## 1οΈβ£ Install Dependencies"
|
40 |
+
],
|
41 |
+
"metadata": {
|
42 |
+
"id": "step1"
|
43 |
+
}
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"metadata": {
|
49 |
+
"id": "install"
|
50 |
+
},
|
51 |
+
"outputs": [],
|
52 |
+
"source": [
|
53 |
+
"!pip install transformers torch gradio accelerate bitsandbytes sentencepiece beautifulsoup4 requests -q\n",
|
54 |
+
"print(\"β
Dependencies installed!\")"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "markdown",
|
59 |
+
"source": [
|
60 |
+
"## 2οΈβ£ Load Jan v1 Model"
|
61 |
+
],
|
62 |
+
"metadata": {
|
63 |
+
"id": "step2"
|
64 |
+
}
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"source": [
|
69 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
70 |
+
"import torch\n",
|
71 |
+
"\n",
|
72 |
+
"print(\"π Loading Jan v1 model...\")\n",
|
73 |
+
"model_name = \"janhq/Jan-v1-4B\"\n",
|
74 |
+
"\n",
|
75 |
+
"# Load with 8-bit quantization to save memory\n",
|
76 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
77 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
78 |
+
" model_name,\n",
|
79 |
+
" torch_dtype=torch.float16,\n",
|
80 |
+
" device_map=\"auto\",\n",
|
81 |
+
" load_in_8bit=True\n",
|
82 |
+
")\n",
|
83 |
+
"\n",
|
84 |
+
"print(\"β
Model loaded successfully!\")\n",
|
85 |
+
"print(f\"Model size: {model.num_parameters()/1e9:.2f}B parameters\")"
|
86 |
+
],
|
87 |
+
"metadata": {
|
88 |
+
"id": "load_model"
|
89 |
+
},
|
90 |
+
"execution_count": null,
|
91 |
+
"outputs": []
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "markdown",
|
95 |
+
"source": [
|
96 |
+
"## 3οΈβ£ Define Research Functions"
|
97 |
+
],
|
98 |
+
"metadata": {
|
99 |
+
"id": "step3"
|
100 |
+
}
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"source": [
|
105 |
+
"import requests\n",
|
106 |
+
"from bs4 import BeautifulSoup\n",
|
107 |
+
"import gradio as gr\n",
|
108 |
+
"\n",
|
109 |
+
"def scrape_url(url: str) -> str:\n",
|
110 |
+
" \"\"\"Scrape and extract text from URL\"\"\"\n",
|
111 |
+
" try:\n",
|
112 |
+
" headers = {'User-Agent': 'Mozilla/5.0'}\n",
|
113 |
+
" response = requests.get(url, headers=headers, timeout=10)\n",
|
114 |
+
" soup = BeautifulSoup(response.content, 'html.parser')\n",
|
115 |
+
" \n",
|
116 |
+
" for script in soup([\"script\", \"style\"]):\n",
|
117 |
+
" script.decompose()\n",
|
118 |
+
" \n",
|
119 |
+
" text = soup.get_text()\n",
|
120 |
+
" lines = (line.strip() for line in text.splitlines())\n",
|
121 |
+
" chunks = (phrase.strip() for line in lines for phrase in line.split(\" \"))\n",
|
122 |
+
" text = ' '.join(chunk for chunk in chunks if chunk)\n",
|
123 |
+
" \n",
|
124 |
+
" return text[:4000]\n",
|
125 |
+
" except Exception as e:\n",
|
126 |
+
" return f\"Error: {str(e)}\"\n",
|
127 |
+
"\n",
|
128 |
+
"def research_assistant(query: str, context: str = \"\", temperature: float = 0.6):\n",
|
129 |
+
" \"\"\"Main research function using Jan v1\"\"\"\n",
|
130 |
+
" \n",
|
131 |
+
" # Check if context is URL\n",
|
132 |
+
" if context.startswith('http'):\n",
|
133 |
+
" context = scrape_url(context)\n",
|
134 |
+
" \n",
|
135 |
+
" prompt = f\"\"\"You are an expert research analyst. Provide comprehensive analysis.\n",
|
136 |
+
"\n",
|
137 |
+
"Context: {context if context else 'No specific context'}\n",
|
138 |
+
"\n",
|
139 |
+
"Query: {query}\n",
|
140 |
+
"\n",
|
141 |
+
"Provide:\n",
|
142 |
+
"1. Key findings\n",
|
143 |
+
"2. Critical analysis\n",
|
144 |
+
"3. Supporting evidence\n",
|
145 |
+
"4. Follow-up questions\n",
|
146 |
+
"\n",
|
147 |
+
"Analysis:\"\"\"\n",
|
148 |
+
" \n",
|
149 |
+
" inputs = tokenizer(prompt, return_tensors=\"pt\", truncation=True, max_length=2048)\n",
|
150 |
+
" inputs = inputs.to(model.device)\n",
|
151 |
+
" \n",
|
152 |
+
" with torch.no_grad():\n",
|
153 |
+
" outputs = model.generate(\n",
|
154 |
+
" **inputs,\n",
|
155 |
+
" max_new_tokens=1024,\n",
|
156 |
+
" temperature=temperature,\n",
|
157 |
+
" top_p=0.95,\n",
|
158 |
+
" top_k=20,\n",
|
159 |
+
" do_sample=True,\n",
|
160 |
+
" pad_token_id=tokenizer.eos_token_id\n",
|
161 |
+
" )\n",
|
162 |
+
" \n",
|
163 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
164 |
+
" response = response.replace(prompt, \"\").strip()\n",
|
165 |
+
" \n",
|
166 |
+
" return response\n",
|
167 |
+
"\n",
|
168 |
+
"print(\"β
Functions defined!\")"
|
169 |
+
],
|
170 |
+
"metadata": {
|
171 |
+
"id": "functions"
|
172 |
+
},
|
173 |
+
"execution_count": null,
|
174 |
+
"outputs": []
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "markdown",
|
178 |
+
"source": [
|
179 |
+
"## 4οΈβ£ Create Gradio Interface"
|
180 |
+
],
|
181 |
+
"metadata": {
|
182 |
+
"id": "step4"
|
183 |
+
}
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"source": [
|
188 |
+
"# Create Gradio interface\n",
|
189 |
+
"with gr.Blocks(title=\"Jan v1 Research Assistant\", theme=gr.themes.Soft()) as demo:\n",
|
190 |
+
" gr.Markdown(\"\"\"\n",
|
191 |
+
" # π¬ Jan v1 Research Assistant (Google Colab)\n",
|
192 |
+
" \n",
|
193 |
+
" Powered by Jan-v1-4B - Running on FREE Google Colab GPU!\n",
|
194 |
+
" \"\"\")\n",
|
195 |
+
" \n",
|
196 |
+
" with gr.Row():\n",
|
197 |
+
" with gr.Column():\n",
|
198 |
+
" query = gr.Textbox(\n",
|
199 |
+
" label=\"Research Query\",\n",
|
200 |
+
" placeholder=\"What would you like to research?\",\n",
|
201 |
+
" lines=2\n",
|
202 |
+
" )\n",
|
203 |
+
" context = gr.Textbox(\n",
|
204 |
+
" label=\"Context (text or URL)\",\n",
|
205 |
+
" placeholder=\"Paste text or URL to analyze\",\n",
|
206 |
+
" lines=5\n",
|
207 |
+
" )\n",
|
208 |
+
" temp = gr.Slider(0.1, 1.0, value=0.6, label=\"Temperature\")\n",
|
209 |
+
" btn = gr.Button(\"π Analyze\", variant=\"primary\")\n",
|
210 |
+
" \n",
|
211 |
+
" with gr.Column():\n",
|
212 |
+
" output = gr.Textbox(\n",
|
213 |
+
" label=\"Analysis Results\",\n",
|
214 |
+
" lines=15\n",
|
215 |
+
" )\n",
|
216 |
+
" \n",
|
217 |
+
" btn.click(\n",
|
218 |
+
" research_assistant,\n",
|
219 |
+
" inputs=[query, context, temp],\n",
|
220 |
+
" outputs=output\n",
|
221 |
+
" )\n",
|
222 |
+
" \n",
|
223 |
+
" gr.Examples(\n",
|
224 |
+
" examples=[\n",
|
225 |
+
" [\"What are the key trends in AI research?\", \"\", 0.6],\n",
|
226 |
+
" [\"Analyze this article for bias\", \"https://example.com/article\", 0.4],\n",
|
227 |
+
" [\"Generate research questions about climate change\", \"\", 0.7]\n",
|
228 |
+
" ],\n",
|
229 |
+
" inputs=[query, context, temp]\n",
|
230 |
+
" )\n",
|
231 |
+
"\n",
|
232 |
+
"# Launch the interface\n",
|
233 |
+
"demo.launch(share=True) # share=True creates a public link"
|
234 |
+
],
|
235 |
+
"metadata": {
|
236 |
+
"id": "gradio"
|
237 |
+
},
|
238 |
+
"execution_count": null,
|
239 |
+
"outputs": []
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "markdown",
|
243 |
+
"source": [
|
244 |
+
"## π Quick Test"
|
245 |
+
],
|
246 |
+
"metadata": {
|
247 |
+
"id": "test"
|
248 |
+
}
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"source": [
|
253 |
+
"# Test the model directly\n",
|
254 |
+
"test_result = research_assistant(\n",
|
255 |
+
" \"What are the implications of large language models for research?\",\n",
|
256 |
+
" \"Large language models have billions of parameters and can process vast amounts of text.\"\n",
|
257 |
+
")\n",
|
258 |
+
"\n",
|
259 |
+
"print(\"Test Result:\")\n",
|
260 |
+
"print(test_result)"
|
261 |
+
],
|
262 |
+
"metadata": {
|
263 |
+
"id": "test_code"
|
264 |
+
},
|
265 |
+
"execution_count": null,
|
266 |
+
"outputs": []
|
267 |
+
}
|
268 |
+
]
|
269 |
+
}
|